Раздел 3. Прогноз и управление состоянием горного массива

УДК 622.2:536.21

И.Р. Венгеров

ТЕПЛОФИЗИЧЕСКИЕ МОДЕЛИ СЛОИСТО-НЕОДНОРОДНЫХ ГОРНЫХ МАССИВОВ

ДонФТИ им. А.А. Галкина НАН Украины

Стисло розглянуто математичні моделі процесів переносу тепла в шаруватонеоднорідних гірничих масивах. Запропоновано загальний метод моделювання теплопереносу в шаруватих системах різної геометрії. Знайдено рівняння «склеювання», за допомогою якого розглянуто асимптотичні випадки.

Ключові слова: теплоперенос, шаруваті гірські породи, математичні моделі

I.R. Vengerov

THERMOPHYSICAL MODELS OF LAYERED INHOMOGENEOUS ROCK MEDIA

Mathematical models of heat transfer in layered inhomogeneous rock media are summarized. A general method of modeling the heat transfer in layered systems of a different geometry is proposed. A "matching" equation for different asymptotic cases has been found.

Keywords: heat transfer, layered inhomogeneous rocks, mathematical simulation

1. Введение

Горные массивы теплофизически микро- и макронеоднородны и анизотропны [1,2]. Наиболее распространена макронеоднородность слоистого типа: горные массивы слагаются из теплофизически разнородных пластов – плоско-слоистых систем (ПСС). Среди них можно выделить эндогенные (типа системы «породы почвы – угольный пласт – породы кровли») и экзогенные (типа «почва – закладка – кровля») [3,4]. Экзогенные цилиндрически-слоистые системы (ЦСС) возникают при проходке выработок и скважин (разуплотнение массивов в окрестности полости) и сооружении сплошных крепей, бетонных, тепло- и гидроизолирующих стенок в подземных сооружениях [5]. Сферически слоистые системы (ССС) характерны для подземных сооружений изопериметрической формы с гидро- и теплоизоляцией [6] либо образованных подземным взрывом [7].

Модели теплового режима слоисто-неоднородных горных массивов строятся на основе краевых задач для уравнений нестационарной теплопроводности с кусочно-постоянными коэффициентами. В большинстве это двухслойные модели, не учитывающие наличие внутренних источников тепла в слоях и их начальную температурную неоднородность [5,8]. Моделей для ЦСС мало [5,6,9], а для ССС они отсутствуют. Целью известных моделей является прогноз теплового режима выработок [3–6,8,10,11]. Для прогноза устойчивости горных выработок и подземных сооружений при экстремальных (аварийных) тепловых режимах, что требует учета термоупругих и термопластических явлений [5,12], слоистые модели не используются (за исключением стационарных термоупругих полей [13–15]). Это связано с весьма громоздкими решениями слоистых задач, традиционно получаемыми интегральным преобразованием Лапласа.

Для построения целостной, достаточно строгой, но доступной для специалистов-прикладников (проектантов, технологов, инженеров) теории моделирования процессов тепломассопереноса в слоисто-неоднородных горных массивах требуется: 1) разработать общий метод построения и исследования слоистых моделей на основе аналитико-числовых методов – функций Грина и метода П.В. Цоя [5]; 2) получить унифицированные промежуточные (базисные) уравнения^{*} для ПСС, ЦСС и ССС; 3) построить и исследовать на основе уравнений «склейки» частные модели (2-, 3- и *N*-слойные) для ПСС, ЦСС и ССС; 4) обосновать методы редукции (упрощения) уравнений «склейки» для временных и параметрических асимптотических случаев; 5) сформулировать и решить обратные задачи для слоистых моделей (в частности, для определения теплофизических характеристик слоев по измеренным на их границах температурам [16]).

Эти «укрупненные» задачи сводятся к совокупности ряда «подзадач», часть которых была решена ранее [3–6,8–11]. В настоящей работе решаются задача 1 и частично – задачи 2 и 4 (применительно к ССС).

2. Метод построения и исследования слоистых моделей

Впервые горнотеплофизические слоистые модели были предложены и изучены Ш.И. Ониани [3]. Позднее такие модели исследовались на основе методов операционного исчисления и функций Грина [10,11,18,19]. Более удобным оказался метод функций «склейки» – комбинации методов функций Грина и преобразования Лапласа [20,21].

Этот метод содержит этапы:

 – обобщенную (в смысле теории обобщенных функций) постановку краевой задачи теплопроводности в *N*-слойной системе с граничными условиями IV рода на внутренних границах;

– введение неизвестных функций «склейки» (далее – без кавычек) $\tilde{\mu}_{k}^{(\pm)}(t)$ – температур на границах $x_{k} = 0$ и $x_{k} = l_{k}$ каждого слоя Ω_{k} $\left(\Omega_{k} = \left\{x_{k} \in (0, l_{k})\right\}, \ k = \overline{1, N}\right);$

^{*} Так называемые уравнения «склейки», физический смысл которых заключается в непрерывности полей температур и потоков тепла на границах слоев, вытекающей из закона сохранения энергии и постулированной идеальности термического контакта между породными слоями.

– использование специального вида решения 1-й краевой задачи теплопроводности в Ω_k – представление граничных функций (содержащее $\tilde{\mu}_k^{(\pm)}(t)$, функцию произвольного начального распределения $\varphi_k(x_k)$, функцию плотности внутренних источников (стоков) тепла $\tilde{f}_k(x_k,t)$ и функцию Грина для $\Omega_k - \tilde{G}_k(x_k,\xi,t)$;

– подстановку решения во второе из граничных условий IV рода – склейки плотностей потоков тепла на границах слоев, что дает интегральное уравнение типа свертки относительно $\tilde{\mu}_k^{(\pm)}(t) \left(k = j - 1, j, j + 1, j = \overline{2, N - 1}\right)$;

– перевод полученного уравнения в алгебраическое уравнение относительно Лаплас-трансформант функций $\tilde{\mu}_{k}^{(\pm)}(p)$ – в уравнение склейки. Для ПСС уравнение склейки было получено в виде [18]:

$$\overline{a}_{k,k-1}(p)\overline{\mu}_{k-1}^{(+)}(p) + \overline{a}_{k,k}(p)\overline{\mu}_{k}^{(+)}(p) + \overline{a}_{k,k+1}(p)\overline{\mu}_{k+1}^{(+)}(p) = \overline{b}_{k}(p).$$
(1)

Здесь Лаплас-трансформанты функций времени снабжены чертой сверху; *p*-параметр преобразования Лапласа; коэффициенты и правая часть (1) имеют вид:

$$\overline{a}_{k,k-1} = -\frac{\varepsilon_k \sqrt{p}}{\mathrm{sh}\,\delta_k \sqrt{p}}, \ \overline{a}_{k,k+1} = -\frac{\varepsilon_{k+1} \sqrt{p}}{\mathrm{sh}\,\delta_{k+1} \sqrt{p}}, \ \varepsilon_k = \sqrt{\lambda_k \left(\rho c\right)}_k, \ \delta_k = \frac{l_k}{\sqrt{a_k}},$$
(2)
$$\overline{a}_{k,k} = \varepsilon_k \sqrt{p} \operatorname{cth} \delta_k \sqrt{p} + \varepsilon_{k+1} \sqrt{p} \operatorname{cth} \delta_{k+1} \sqrt{p},$$

$$= \varepsilon_k \sqrt{p} \operatorname{cth} \delta_k \sqrt{p} + \varepsilon_{k+1} \sqrt{p} \operatorname{cth} \delta_{k+1} \sqrt{p},$$
$$\overline{b}_k = -\left\langle \overline{q}_k^{(+)}, \overline{\Psi}_k \right\rangle_{\Omega_k} + \left\langle \overline{q}_{k+1}^{(-)}, \overline{\Psi}_{k+1} \right\rangle_{\Omega_k+1},$$
(3)

$$\overline{q}_{k}^{(+)} = -\left(\rho c\right)_{k} \frac{\operatorname{sh}\left(\delta_{k}\sqrt{p} \quad \xi/l_{k}\right)}{\operatorname{sh}\delta_{k}\sqrt{p}}, \ \overline{q}_{k+1}^{(-)} = \left(\rho c\right)_{k+1} \frac{\operatorname{sh}\left[\delta_{k+1}\sqrt{p}\left(1-\xi/l_{k+1}\right)\right]}{\operatorname{sh}\delta_{k+1}\sqrt{p}}, \ (4)$$

где $a_k = \lambda_k / (\rho c)_k$; a_k , λ_k , $(\rho c)_k$ – соответственно коэффициент температуроводности, коэффициент теплопроводности и удельная объемная теплоемкость горной породы в Ω_k ; $\overline{\Psi}_k = \varphi_k(\xi) + \overline{f}_k(\xi, p)$, $\xi \in \Omega_k$ – текущая координата, по которой осуществляется интегрирование.

Уравнение (1) – исходный пункт для построения и исследования различных слоистых моделей. Необходимо получить его аналог для ЦСС и ПСС.

Рассматриваем области $\Omega_k^{(m)}$ $(k = \overline{1, N}, m = 2, 3)$. Поскольку слоистые модели одномерные, для цилиндрических (m = 2) и сферических (m = 3) слоев имеем $\Omega_k^{(m)} = \{r \in (r_{k-1}, r_k), k = \overline{1, N},\}$. Радиальная координата отсчитывается от центра симметрии системы. Используем биообобщенную постановку краевой задачи, при которой, в отличие от обобщенной, в правую часть уравнения переходят не только начальное, но и граничные условия [22]: Прогноз и управление состоянием горного массива

$$\frac{\partial \tilde{T}_{k}^{(m)}}{\partial t} = \nabla_{m}^{2} \tilde{T}_{k}^{(m)} + \tilde{\Psi}_{k} + \tilde{\Phi}_{k} + \tilde{R}_{k}, \ t \ge 0, \ r \in \Omega_{k}^{(m)}, \ \nabla_{m}^{2} = \frac{1}{r^{m-1}} \frac{\partial}{\partial r} \left(r^{m-1} \frac{\partial}{\partial r} \right), \ (5)$$

$$\tilde{T}_{k}^{(m)} = \tilde{T}_{k}^{(m)}(r,t) = \Theta(t) \chi_{k}(r) \quad T_{k}^{(m)}(r,t), \ \Theta(t) = \begin{cases} 1, \ t > 0, \\ 0, \ t \le 0, \end{cases}$$

$$\tilde{\Psi}_{k} = \tilde{\Psi}_{k}(r,t) = \chi_{k}(r) \left[\phi_{k}(r) \quad \delta(t) + \tilde{f}_{k}(r,t) \right], \ \chi_{k}(r) = \begin{cases} 1, \ r \in \Omega_{k}^{(m)}, \\ 0, \ r \in \Omega_{k}^{(m)}, \end{cases}$$

$$\tilde{\Phi}_{k} = -a_{k} \left[\tilde{\mu}_{k}^{(-)}(t) \delta'(r-r_{k-1}) - \tilde{\mu}_{k}^{(+)}(t) \delta'(r-r_{k}) \right], \\
\tilde{R}_{k} = -a_{k} \left[\left(\frac{\partial \tilde{T}_{k}^{(m)}}{\partial r} + \frac{m-1}{r} \tilde{T}_{k}^{(m)} \right) \left(\delta(r-r_{k-1}) - \delta(r-r_{k}) \right) \right].$$

$$(7)$$

Здесь $\Theta(t)$ – единичная ступенчатая функция Хэвисайда; $\delta(t) = d\Theta(t)/dt$; $\delta(t)$ – дельта-функция Дирака; $\chi_k(r) = \Theta(r - r_{k-1}) - \Theta(r - r_k)$ – характеристическая функция области $\Omega_k^{(m)}$; $\delta(r - r_k) = d\Theta(r - r_k)/dr$ [23].

Биообобщенной постановке задачи (5)–(7) соответствует более простая структура решения – «представление потенциала» [21,24]:

$$\tilde{T}_{k}^{(m)}(r,t) = \langle G_{k}^{(m)}(r,r',t) *_{(t)} \left[\tilde{\Psi}_{k}(r',t) + \tilde{\Phi}_{k}(r',t) \right] \rangle_{\Omega_{k}^{(m)}}.$$
(8)

Функция $\tilde{R}_k(r,t)$ в (8) выпадает, т.к. содержит δ-функции, обнуливающие решения ввиду принимаемых для функций Грина однородных граничных условий:

$$\tilde{G}_{k}^{(m)}(r,r',t)\Big|_{r=r_{k-1}} = \tilde{G}_{k}^{(m)}(r,r',t)\Big|_{r=r_{k}} = 0.$$

Символ $*_{(t)}$ в (8) обозначает свертку по t. Можно показать (чего не делаем из-за громоздкости выкладок), что представление потенциала и граничных функций эквивалентны, т.е. приводятся друг к другу.

Подстановка $\tilde{T}_{k}^{(m)}(r,t)$ и $\tilde{T}_{k+1}^{(m)}(r,t)$ во второе из граничных условий IV рода позволяет получить уравнение склейки, аналогичное (1):

$$\overline{a}_{k,k-1}^{(m)}\overline{\mu}_{k-1}^{(+)}(p) + \overline{a}_{k,k}^{(m)}\overline{\mu}_{k}^{(+)}(p) + \overline{a}_{k,k+1}^{(m)}\overline{\mu}_{k+1}^{(+)}(p) = \overline{b}_{k}^{(m)}(p), \quad m = 2,3.$$
(9)

Для ЦСС (m = 2) коэффициенты (9) имеют весьма громоздкий вид, поскольку соответствующие функции Грина представляют собой ряды со спецфункциями, что требует их приближенного определения [9,10]. Для сферических слоистых систем (m = 3) удается получить компактные выражения:

$$\overline{a}_{k,k-1}^{(3)} = -\frac{\lambda_k}{\Delta r_k} \left(1 - \frac{\Delta r_k}{r_k} \right) \frac{\delta_k \sqrt{p}}{\mathrm{sh} \, \delta_k \sqrt{p}}, \quad \overline{a}_{k,k+1}^{(3)} - \frac{\lambda_{k+1}}{\Delta r_{k+1}} \left(1 + \frac{\Delta r_{k+1}}{r_k} \right) \frac{\delta_{k+1} \sqrt{p}}{\mathrm{sh} \, \delta_{k+1} \sqrt{p}}, \quad (10)$$

$$\overline{a}_{k,k}^{(3)} = \frac{\lambda_k \delta_k \sqrt{p}}{\Delta r_k} \operatorname{cth} \delta_k \sqrt{p} + \frac{\lambda_{k+1} \delta_{k+1} \sqrt{p}}{\Delta r_{k+1}} \operatorname{cth} \delta_{k+1} \sqrt{p} + \frac{\lambda_{k+1} - \lambda_k}{r_k};$$

$$\overline{b}_k^{(3)} = \frac{1}{r_k} \left[\left(\rho c \right)_k \left\langle \overline{K}_{3,k}^{(+)}, \, \overline{\Psi}_k \right\rangle_{\Omega_k^{(3)}} + \left(\rho c \right)_{k+1} \left\langle \overline{K}_{3,k+1}^{(-)}, \overline{\Psi}_{k+1} \right\rangle_{\Omega_{k+1}^{(3)}} \right],$$

$$\overline{k}_{3,k}^{(+)} + \frac{1}{4\pi r'} \frac{\operatorname{sh} \delta_k \sqrt{p} \rho'_k}{\operatorname{sh} \delta_k \sqrt{p}}, \quad \overline{K}_{3,k+1}^{(-)} = \frac{1}{4\pi r'} \frac{\operatorname{sh} \delta_{k+1} \sqrt{p} \left(1 - \rho'_{k+1} \right)}{\operatorname{sh} \delta_{k+1} \sqrt{p}}, \quad (11)$$

$$\Delta r_k = r_k - r_{k-1}, \quad \delta_k = \frac{\Delta r_k}{\sqrt{a_k}}, \quad \rho'_k = \frac{r' - r_{k-1}}{\Delta r_k}.$$

Проверку (9)–(11) можно осуществить двумя способами: 1) совпадением (9) с (1) при переходе к плоским слоям (для чего необходимо заменить: $\Delta r_k \rightarrow l_k, \ \Delta r_{k+1} \rightarrow l_{k+1}, \ r_k \rightarrow \infty$); 2) совпадением подвергнутого обратному преобразованию Лапласа (9) при стягивании ширин слоев в точку ($\Delta r_k, \ \Delta r_{k+1} \rightarrow 0, \ r_k \rightarrow r$) с уравнением теплопроводности для непрерывнонеоднородной среды:

$$\rho(r)c(r)\frac{\partial \tilde{T}^{(m)}}{\partial t} = \frac{1}{r^{m-1}} \left(r^{m-1}\lambda(r)\frac{\tilde{\partial}\tilde{T}^{(m)}}{\partial r} \right) + \rho(r)c(r)\tilde{\Psi}(r,t).$$
(12)

Несложные, но несколько громоздкие выкладки, здесь опускаемые, показывают, что оба эти способа подтверждают правильность (9)–(11).

3. Временные асимптотики

3.1. «Малые» времена. Для достаточно малых $t \le t_0$ температура на границе слоев $\Omega_k^{(3)}$ и $\Omega_{k+1}^{(3)} - T_k^{(3)}(r_k, t) = \tilde{\mu}_k^{(+)}(t)$ не должна зависеть от $\tilde{\mu}_{k-1}^{(+)}(t)$ и $\tilde{\mu}_{k+1}^{(+)}(t)$ (редукция двухслойной системы $\{\Omega_k^{(3)}, \Omega_{k+1}^{(3)}\}$ с конечными слоями к двухслойной системе с полубесконечными слоями $\{\Omega_{1+}^{(1)}, \Omega_{2+}^{(1)}\}$). Одновременная замена сферических слоев плоскими здесь обязательна. В пределе $t \to 0$ $(p \to \infty)$ из (9) следует, в соответствии со случаем плоских слоев [21]:

$$\tilde{\mu}_{k}^{(+)}(0) = \lim_{t \to 0} \tilde{\mu}_{k}^{(+)}(t) = \lim_{p \to \infty} p \overline{\mu}_{k}^{(t)}(p) = \frac{\varepsilon_{k} \varphi_{k}(r_{k}-0) + \varepsilon_{k+1} \varphi_{k+1}(r_{k}+0)}{\varepsilon_{k} + \varepsilon_{k+1}}.$$
 (13)

Прогноз и управление состоянием горного массива

Получение выражения для $\tilde{\mu}_{k}^{(+)}(t)$ при $t \in (0, t_0)$ требует перехода Δr_k , $\Delta r_{k+1} \to \infty$, что возможно при одновременном переходе к плоским слоям (для чего надо положить $r_k \to \infty$). В итоге получаем:

$$\tilde{\mu}_{k}^{(+)}(t) = \left\{ \varepsilon_{k} \int_{0}^{\infty} d\xi \left(\left[\frac{\exp\left(-\xi^{2}/4a_{k}t\right)}{\sqrt{\pi a_{k}t}} \right]_{(t)}^{*} \tilde{\Psi}_{k} \right) + \varepsilon_{k+1} \int_{0}^{\infty} d\xi \left(\left[\frac{\exp\left(-\xi^{2}/4a_{k+1}t\right)}{\sqrt{\pi a_{k+1}t}} \right]_{(t)}^{*} \tilde{\Psi}_{k+1} \right) \right\} \right/ (\varepsilon_{k} + \varepsilon_{k+1}).$$

$$(14)$$

Если в (14) перейти к пределу $t \to 0$ и учесть, что в квадратных скобках имеем $\delta(\xi)$, то получим (13), где $r = r_k$ соответствует началу координат осей 0ξ , ориентированных в слоях противоположно.

Установим критерий применимости (14) – границу t_0 интервала $t \in (0, t_0)$, для которого это соотношение справедливо. Запишем функции в квадратных скобках (14) в квазифинитной форме [23]:

$$\tilde{F}_{i}(\xi,t) \cong \chi_{i}(Li) \left[\frac{\exp\left(-\xi^{2}/4a_{i}t\right)}{\sqrt{\pi a_{i}t}} \right], \quad \chi_{i}(Li) = \begin{cases} 1, \xi \in (0,Li)\\ 0, \xi \in (0,Li) \end{cases}, \quad i = k, k+1.$$
(15)

Первый интеграл в (14) обозначим J_k , а его приближение при подстановке $\tilde{F}_i(\xi, t) - \hat{J}_k$. Тогда

$$\varepsilon^{(k)} = \frac{J_k - \hat{J}_k}{J_k} = 1 - \frac{\hat{J}_k}{J_k}, \quad \hat{J}_k = \int_0^{L_k} d\xi \left[\left[\frac{\exp\left(-\xi^2 / 4a_k t\right)}{\sqrt{\pi a_k t}} \right]_{(t)}^* \tilde{\Psi}_k \right]. \tag{16}$$

Как можно показать, при ограниченных по модулю в области $\xi \in (0, L_k)$, $t \in (0, T)$ $(T < \infty)$ функциях $\tilde{\Psi}_k$ справедлива оценка

$$\epsilon^{(k)} \le 1 - \hat{J}_{k0} / J_{k0},$$
 (17)

где J_{k0} , \hat{J}_{k0} – значение интегралов J_k и \hat{J}_k при $\tilde{\Psi}_k \equiv 1$. Отсюда следует, что требованию $\varepsilon^{(k)} \leq 0,5\%$ соответствует условие $L_k \leq L_k(t) = 4\sqrt{a_k t}$. Аналогично для $k \to k+1$ имеем $L_{k+1} \leq L_{k+1}(t) = 4\sqrt{a_{k+1} t}$. Зона термического влияния, отсчитываемая в $\Omega_k^{(3)}$ от $r = r_k$, будет $\delta r_k \leq L_k(t)$, а в области $\Omega_{k+1}^{(3)}$ - соответственно $\delta r_{k+1} \leq L_{k+1}(t)$. Чтобы эти зоны, отсчитываемые в $\Omega_k^{(3)}$ от $r = r_{k-1}$ и $r = r_k$, в $\Omega_{k+1}^{(3)}$ от $r = r_k$ и $r = r_{k+1}$, не перекрывались, необходимо потребовать: $L_k(t) \leq \frac{\Delta r_k}{2}$, $L_{k+1}(t) \leq \frac{\Delta r_{k+1}}{2}$.

Отсюда получаем искомый критерий:

$$t \le t_0 = 0,0156 \min\left\{t_r^{(k)}, t_r^{(k+1)}\right\}, \ t_r^{(k)} = \frac{\Delta r_k^2}{a_k}.$$
 (18)

3.2. «Большие» времена. Для поля в $\Omega_k^{(3)}$ критерием приближения «больших времен» (или квазистационарности поля) $t \ge t_s^{(k)}$ будет такое значение $t = t_s^{(k)}$, начиная с которого компонента температурного поля, обусловленная начальной температурой неоднородностью, будет составлять не более 0,5% от начальной температуры. Эта компонента согласно (8):

$$\tilde{U}_{k}^{(3)}(r,t) = 4\pi \int_{r_{k-1}}^{r_{k}} (r')^{2} dr' \tilde{G}_{k}^{(3)}(r,r',t) \varphi_{k}(r').$$
⁽¹⁹⁾

Оценивая (19) по модулю, получаем:

$$\left\|\tilde{U}_{k}^{(3)}\right\|_{\mathcal{C}\left(\Omega_{k}^{(3)}\right)} = \max_{r \in \Omega_{r}^{(3)}} \left|\tilde{U}_{k}^{(3)}(r,t)\right| \le \left\|\varphi_{k}\right\|_{\mathcal{C}\left(\Omega_{k}^{(3)}\right)} 4\pi \int (r')^{2} dr' \left|\overline{G}_{k}^{(3)}(r,r't)\right|.$$
(20)

Используя выражение для $\tilde{G}_{k}^{(3)}(r,r't)$ [21]:

$$\tilde{G}_{k}^{(3)}(r,r',t) = \frac{\Theta(t)}{2\pi\Delta r_{k}} \sum_{n=1}^{\infty} \frac{1}{rr'} \exp\left[-\left(\frac{n\pi}{\Delta r_{k}}\right)^{2} a_{k}t\right] \sin\left(n\pi\rho_{k}\right) \sin\left(n\pi\rho_{k}'\right)$$
(21)

(где $\rho_k = (r - r_{k-1}) / \Delta r_k$, $\dot{\rho'_k} = (r' - r_{k-1}) / \Delta r_k$), для интеграла в (20), обозначаемого $R_k(t)$, получаем оценку:

$$R_{k}(t) \leq \frac{2}{\pi} \left(1 + \alpha_{k}\right) \exp\left(-\pi^{2} t_{s}^{(k)} / t_{r}^{(k)}\right), \ \alpha_{k} = \frac{r_{k}}{r_{k-1'}}, \ t_{r}^{(k)} = \frac{\Delta r_{k}^{2}}{a_{k}}.$$
 (22)

Полагая правую часть в (22) равной $5 \cdot 10^{-3}$, с учетом (20) находим для $\alpha_k \in [1,05;2,0]$:

α_k	1,05	1,1	1,25	1,75	2,0
$t_s^{\left(k\right)} / t_r^{\left(k\right)}$	0,565	0,567	0,584	0,594	0,602

Видно, что $t_s^{(k)}/t_r^{(k)}$ возрастает с увеличением толщины слоя $\Omega_k^{(3)}$, но незначительно. Поэтому можем принять критерий квазистационарности в виде:

$$t \ge t_s^{(k)} = 0, 6t_r^{(k)}.$$
 (23)

Для *N*-слойной системы $t_r^{(k)} = \max t_r^{(j)} (j = \overline{1, N})$, тогда (23) справедливо для уравнений склейки (9) при всех $k = \overline{1, N}$. В этом случае можно положить $\varphi_k(r) = 0$, а при отсутствии в слоях источников тепла и $\tilde{\Psi}_k(r, t) = 0$. Уравнение (9) становится однородным, и по известным $\overline{\mu}_j^{(+)}(p)$ (j = k - 1, k + 1)можно найти $\overline{\mu}_k^{(+)}(p)$.

Стационарное (при $t \to \infty$) решение (9) легко находится, т.к. из (10) следует:

$$\lim_{p \to 0} \overline{a}_{k,k-1}^{(3)}(p) = -\frac{\lambda_k}{\Delta r_k} \left(1 - \frac{\Delta r_k}{r_k} \right),$$

$$\lim_{p \to 0} \overline{a}_{k,k+1}^{(3)}(p) = -\frac{\lambda_{k+1}}{\Delta r_{k+1}} \left(1 + \frac{\Delta r_{k+1}}{r_k} \right),$$

$$\lim_{p \to 0} \overline{a}_{k,k}^{(3)}(p) = \frac{\lambda_k}{\Delta r_k} \left(1 - \frac{\Delta r_k}{r_k} \right) + \frac{\lambda_{k+1}}{\Delta r_{k+1}} \left(1 + \frac{\Delta r_{k+1}}{r_k} \right),$$

$$\tilde{\mu}_{k,s}^{(+)} = \lim_{t \to \infty} \tilde{\mu}_k^{(+)}(t) = \lim_{p \to 0} p \quad \bar{\mu}_k^{(+)}(p).$$
(24)

Полученное по (9) и (24) выражение для $\tilde{\mu}_{k,s}^{(+)}$ совпадает со следующим из решения стационарной задачи теплопроводности для двухслойной системы $\left\{\Omega_k^{(3)}, \Omega_{k+1}^{(3)}\right\}$.

4. Параметрические асимптотики

Коэффициенты и правая часть (9), а следовательно, и $\tilde{\mu}_{k}^{(+)}(t)$ зависят от параметров δ_{k} и δ_{k+1} , содержащих геометрические и теплофизические характеристики слоев $\left(\delta_{k} = \Delta r_{k} / \sqrt{a_{k}}, \delta_{k}^{2} = t_{r}^{(k)}\right)$. Параметрическими асимптотиками будем называть случаи экстремального поведения этих параметров («вырождение» моделей). Для $\Omega_{k}^{(3)}$ имеются две возможности:

a)
$$t_r^{(k)} \ll t_r^{(v)};$$

b) $t_r^{(k)} \gg t_r^{(\mu)}, \ t_r^{(v)} = \min_{\substack{(j \neq k)}} t_r^{(j)}, \ t_r^{(\mu)} = \max_{\substack{(j' \neq k)}} t_r^{(j)}$

В предельном случае $t_r^{(k)} \to 0$, $\delta_k \to 0$, что соответствует случаю $t \to \infty$ $(p \to 0)$. При $t_r^{(k)} \to \infty$, $\delta_k \to \infty$ имеем случай $t \to 0$ $(p \to \infty)$. Рассмотрим случай а), когда $t_r^{(k)}$ мало (много меньше, чем минимальное по всем другим слоям системы характерное время $t_r^{(v)}$), но отлично от нуля. Здесь также есть две возможности: 1) $t_r^{(k)}$ мало, т.к. мало Δr_k ; 2), $t_r^{(k)}$ мало, т.к. велико a_k (большая теплопроводность среды в $\Omega_k^{(3)}$). Обозначим множители в коэффициентах (9), зависящих от p, через $\overline{\Phi}_i^{(k)}$ (i = 1, 2):

$$\overline{\Phi}_{1}^{(k)}(p) = \frac{\delta_{k}\sqrt{p}}{sh \ \delta_{k}\sqrt{p}}; \ \overline{\Phi}_{2}^{(k)}(p) = \frac{\delta_{k}\sqrt{p} \ ch\delta_{k}\sqrt{p}}{sh \ \delta_{k}\sqrt{p}}.$$
(25)

Разлагая (25) в ряды, получаем [25, с.133]:

$$\overline{\Phi}_{1}^{(k)}(p) = 1 - \frac{t_{r}^{(k)}p}{6} + \frac{7}{360} \left(t_{r}^{(k)}p\right)^{2} - \cdots,$$

$$\overline{\Phi}_{2}^{(k)}(p) = 1 + \frac{t_{r}^{(k)}p}{3} - \frac{1}{45} \left(t_{r}^{(k)}p\right)^{2} + \cdots.$$
(26)

При $t_r^{(k)} \to 0$, $\overline{\Phi}_1^{(k)}(p) = \overline{\Phi}_2^{(k)}(p) = 1$ коэффициенты (9) соответствуют случаю стационара, уравнение редуцируется. В слое $\Omega_k^{(3)}$ сразу устанавливается стационарное поле. Сохраняя в (26) то или иное число членов рядов, получим различные квазистационарные приближения. Для некоторой функции времени F(t) можно записать $dF/dt \sim F/t_{min}$ (оценки такого рода весьма распространены; t_{min} – некоторое характерное малое время). Тогда, осуществляя обратное преобразование Лапласа, получаем:

$$\overline{\Phi}_{2}^{(k)}(p) \ \overline{F}(p) = \left[1 - \frac{t_{r}^{(k)}(p)}{6} + \frac{7}{360} \left(t_{r}^{(k)}p\right)^{2} - \cdots\right] F(p) \Longrightarrow W(t) \approx \\ \approx \left(1 - \frac{1}{6} \left(\frac{t_{r}^{(k)}}{t_{\min}}\right) + \frac{7}{360} \left(\frac{t_{r}^{(k)}}{t_{\min}}\right)^{2} - \cdots\right) \overline{F}(t).$$
(27)

В (27) можно ограничиться двумя первыми членами ряда, если только $\frac{7}{60} \left(\frac{t_r^{(k)}}{t_{\min}} \right) \le 10^{-2}$. Приняв $t_{\min} = t_r^{(v)}$, находим критерий редукции (9) (крите-

рий вырождения модели в $\Omega_k^{(3)}$):

$$t_r^{(k)} \le 0,086 \ t_r^{(v)}$$
. (28)

Неравенство $t_r^{(k)} \leq 0,15 \ t_r^{(v)}$, следующее из рассмотрения $\overline{\Phi}_2^{(k)}(p)$, не используем как более слабое по сравнению с (28). При совпадении Δr_k и Δr_v из (28) следует критерий вырождения для a_k :

$$a_k \ge 11, 6a_v. \tag{29}$$

При $a_k = a_v$, напротив, из (28) получаем критерий «узости» $\Omega_k^{(3)}$:

$$\Delta r_k \le 0,29 \quad \Delta r_v \,. \tag{30}$$

Если в $\Omega_k^{(3)}$ и $\Omega_v^{(3)}$ одинаковы теплопроводности ($\lambda_k = \lambda_v$), то из (29) следует

$$\left(\rho c\right)_{k} \leq 0.086 \left(\rho c\right)_{v}. \tag{31}$$

Выводы

1. Слоистые теплофизические модели важны для решения задач прогноза теплового режима и устойчивости подземных сооружений, в особенности при моделировании аварийных ситуаций.

2. Известные модели не вполне соответствуют предъявляемым требованиям (при упрощенных постановках задач методы их решения усложнены). Моделей для цилиндрических слоистых систем мало, а для сферических они отсутствуют.

3. Предложен метод «функций склейки» для решения краевых задач переноса в слоистых системах с плоскими, цилиндрическими и сферическими слоями. Получено уравнение «склейки» для сферических слоистых систем.

4. На основе уравнения «склейки» проанализированы временные и параметрические асимптотики, установлены критерии применения соответствующих редукций.

- 1. *Щербань А.Н., Кремнев О.А.* Научные основы расчета и регулирования теплового режима глубоких шахт: В 2 томах. Киев: Изд-во АН УССР, 1959, т. 1. 430 с.
- Николаев С.А., Николаева Н.Г., Саламатин А.И. Теплофизика горных пород. Казань: Изд-во КГУ, 1987. – 151 с.
- Ониани Ш.И. Тепловой режим глубоких шахт при гидравлической закладке выработанного пространства и сложном рельефе поверхности. – Тбилиси: Мецниереба, 1973. – 308 с.
- Венгеров И.Р. Теплофизические модели полной закладки выработанного пространства глубоких шахт // Препринт ДонФТИ. – 1995-4. – Донецк: изд. Дон-ФТИ им. А.А. Галкина АН Украины, 1995. – 45 с.

- 5. Венгеров И.Р. Тепломассоперенос в шахтах и рудниках (математические модели). 4. Теплоперенос в горных массивах // Препринт ДонФТИ. – 2002-4. – Донецк: изд. ДонФТИ им. А.А. Галкина НАН Украины, 2002. – 101 с.
- 6. Черняк В.П., Киреев В.А., Полубинский А.С. Нестационарный тепломассоперенос в разрушаемых массивах горных пород. – Киев: Наук. думка, 1992. – 224 с.
- 7. *Мельник В.К., Добрянский Ю.П., Щербань А.Н.* Моделирование температурного режима при остывании зоны внутренних взрывов. ДАН УССР, сер. А. 1978. № 12. С. 1129–1132.
- 8. *Кремнев О.А., Журавленко В.Я.* Тепло- и массообмен в горном массиве и подземных сооружениях. – Изд. 2-е, доп., исправл. – Киев: Наук. думка, 1986. – 344 с.
- 9. Галицын А.С. Краевые задачи теплофизики подземных сооружений. Киев: Наук. думка, 1983. 236 с.
- 10. *Кузин В.А., Венгеров И.Р.* Двухслойная теплофизическая модель горного массива // Промышленная теплотехника. 1984. **6**, № 1. С. 30–34.
- Венгеров И.Р. Расчет коэффициентов нестационарного теплообмена на основе слоистых моделей теплопереноса // Промышленная теплотехника. – 1995. – 17, № 6. – С. 32–39.
- Ревва В.Н. Влияние температуры на предельное состояние породного массива в окрестности горной выработки // ФТВД. – 1997. – 7, № 2. – С. 133–136.
- Семерак М.М., Бейзим І.А. Термостійкість залізобетонних конструкцій при зміні температури // Вісті Донецького гірничого інституту. – Донецьк: ДВНЗ «ДонНТЦ». – 2007. – № 2. – С. 46–68.
- 14. Тютькин А.А. Исследование взаимодействия слоистого массива с конструкцией пилонной станции метрополитена. – Донецьк: ДВНЗ «ДонНТУ», 2007. – № 2 – С. 125–133.
- 15. Семерак М.М., Суббота А.В. Термонапружений стан твелів ядерних реакторів. Донецьк: ДВНЗ "ДонНТУ". 2007. № 2. С. 157–161.
- Венгеров И.Р. Теплоперенос в шахтах и рудниках (математические модели). 7. Принципы развития парадигмы // Препринт ДонФТИ. – 2002-7. – Донецк: Издво ДонФТИ им. А.А. Галкина НАН Украины, 2002. – 111 с.
- Краморов А.С., Венгеров И.Р., Морева А.Г. К вопросу определения коэффициента нестационарного теплообмена при теплоизоляции стенок горных выработок. – В кн.: Охлаждение воздуха в угольных шахтах / Сб. работ МакНИИ, вып. 4. – Макеевка: Изд-во МакНИИ, 1975. – С. 71–76.
- Венгеров И.Р. Расчет тепломассопереноса в неоднородном горном массиве. В кн.: Борьба с высокими температурами рудничного воздуха. – Макеевка: Изд-во МакНИИ, 1980. – С. 53–56.
- Венгеров И.Р. К теории тепло- и массопереноса в слоисто-неоднородных горных массивах и геотехнологических системах. – В кн.: Проблемы горной теплофизики / Материалы II-й Всесоюзной научно-технической конференции, Ленинград, 1981. – Л.: Изд-во ЛГУ им. А.А. Плеханова, 1981. – С. 117–118.
- 20. Венгеров И.Р. К обобщению задачи Зоммерфельда о теплопроводности в кольце // ИФЖ. 1978. **35**, № 1. С. 150–154.
- 21. Венгеров И.Р. Теория линейного переноса в слоистых системах // Препринт ДонФТИ. 1982-27. Донецк: Изд.-во ДонФТИ АН УССР, 1982. 64 с.

Прогноз и управление состоянием горного массива

- 22. Венгеров И.Р. Математическое моделирование экологически чистых геотехнологических систем // Вісті Донецького гірничого інституту. – 2007. – № 2, С. 172–177.
- 23. Венгеров И.Р. Хроноартефакты термодинамики. Донецк: Норд-пресс, 2005. 236 с.
- 24. Владимиров В.С. Уравнения математической физики. М.: Наука, 1967. 436 с.
- 25. *Двайт Г.Б.* Таблицы интегралов и другие математические формулы. М.: Наука, 1966. – 228 с.

Статья поступила в редакцию 7 октября 2008 года