5,323 research outputs found

    Parameter likelihood of intrinsic ellipticity correlations

    Full text link
    Subject of this paper are the statistical properties of ellipticity alignments between galaxies evoked by their coupled angular momenta. Starting from physical angular momentum models, we bridge the gap towards ellipticity correlations, ellipticity spectra and derived quantities such as aperture moments, comparing the intrinsic signals with those generated by gravitational lensing, with the projected galaxy sample of EUCLID in mind. We investigate the dependence of intrinsic ellipticity correlations on cosmological parameters and show that intrinsic ellipticity correlations give rise to non-Gaussian likelihoods as a result of nonlinear functional dependencies. Comparing intrinsic ellipticity spectra to weak lensing spectra we quantify the magnitude of their contaminating effect on the estimation of cosmological parameters and find that biases on dark energy parameters are very small in an angular-momentum based model in contrast to the linear alignment model commonly used. Finally, we quantify whether intrinsic ellipticities can be measured in the presence of the much stronger weak lensing induced ellipticity correlations, if prior knowledge on a cosmological model is assumed.Comment: 14 pages, 8 figures, submitted to MNRA

    Probing the cosmic web: inter-cluster filament detection using gravitational lensing

    Full text link
    The problem of detecting dark matter filaments in the cosmic web is considered. Weak lensing is an ideal probe of dark matter, and therefore forms the basis of particularly promising detection methods. We consider and develop a number of weak lensing techniques that could be used to detect filaments in individual or stacked cluster fields, and apply them to synthetic lensing data sets in the fields of clusters from the Millennium Simulation. These techniques are multipole moments of the shear and convergence, mass reconstruction, and parameterized fits to filament mass profiles using a Markov Chain Monte Carlo approach. In particular, two new filament detection techniques are explored (multipole shear filters and Markov Chain Monte Carlo mass profile fits), and we outline the quality of data required to be able to identify and quantify filament profiles. We also consider the effects of large scale structure on filament detection. We conclude that using these techniques, there will be realistic prospects of detecting filaments in data from future space-based missions. The methods presented in this paper will be of great use in the identification of dark matter filaments in future surveys.Comment: 12 pages, 4 figures, MNRAS accepted, (replacement due to corrupted end of pdf file

    Constraining Cosmology with High Convergence Regions in Weak Lensing Surveys

    Full text link
    We propose to use a simple observable, the fractional area of "hot spots" in weak gravitational lensing mass maps which are detected with high significance, to determine background cosmological parameters. Because these high-convergence regions are directly related to the physical nonlinear structures of the universe, they derive cosmological information mainly from the nonlinear regime of density fluctuations. We show that in combination with future cosmic microwave background anisotropy measurements, this method can place constraints on cosmological parameters that are comparable to those from the redshift distribution of galaxy cluster abundances. The main advantage of the statistic proposed in this paper is that projection effects, normally the main source of uncertainty when determining the presence and the mass of a galaxy cluster, here serve as a source of information.Comment: 14 pages, 4 figures, accepted for publication in Astrophysical Journa

    Lyman-alpha emission galaxies at a redshift of z = 5.7 in the FORS Deep Field

    Full text link
    We present the results of a search for Lyman-alpha emission galaxies at z~ 5.7 in the FORS Deep Field. The objective of this study is to improve the faint end of the luminosity function of high-redshift Lyman-alpha emitting galaxies and to derive properties of intrinsically faint Lyman-alpha emission galaxies in the young universe. Using FORS2 at the ESO VLT and a set of special interference filters, we identified candidates for high-redshift Lyman-alpha galaxies. We then used FORS2 in spectroscopic mode to verify the identifications and to study their spectral properties. The narrow-band photometry resulted in the detection of 15 likely Lyman-alpha emission galaxies. Spectra with an adequate exposure time could be obtained for eight galaxies. In all these cases the presence of Lyman-alpha emission at z = 5.7 was confirmed spectroscopically. The line fluxes of the 15 candidates range between 3 and 16 * 10^-21 Wm^-2, which corresponds to star-formation rates not corrected for dust between 1 and 5 Msun/yr. The luminosity function derived for our photometrically identified objects extends the published luminosity functions of intrinsically brighter Lyman-alpha galaxies. With this technique the study of high-redshift Lyman-alpha emission galaxies can be extended to low intrinsic luminosities.Comment: 9 pages, 17 figures. Accepted by A&A. PDF version with higher resolution figures here: http://www.lsw.uni-heidelberg.de/users/jheidt/fdf/pubs/fdflae5_7_110406.pd

    On the validity of the Born approximation for weak cosmic flexions

    Full text link
    Weak lensing calculations are often made under the assumption of the Born approximation, where the ray path is approximated as a straight radial line. In addition, lens-lens couplings where there are several deflections along the light ray are often neglected. We examine the effect of dropping the Born approximation and taking lens-lens couplings into account, for weak lensing effects up to second order (cosmic flexion), by making a perturbative expansion in the light path. We present a diagrammatic representation of the resulting corrections to the lensing effects. The flexion signal, which measures the derivative of the density field, acquires correction terms proportional to the squared gravitational shear; we also find that by dropping the Born approximation, two further degrees of freedom of the lensing distortion can be excited (the twist components), in addition to the four standard flexion components. We derive angular power spectra of the flexion and twist, with and without the Born-approximation and lens-lens couplings and confirm that the Born approximation is an excellent approximation for weak cosmic flexions, except at very small scales.Comment: 12 pages, 5 figures, submitted to MNRA

    Optimal capture of non-Gaussianity in weak lensing surveys: power spectrum, bispectrum and halo counts

    Full text link
    We compare the efficiency of weak lensing-selected galaxy clusters counts and of the weak lensing bispectrum at capturing non-Gaussian features in the dark matter distribution. We use the halo model to compute the weak lensing power spectrum, the bispectrum and the expected number of detected clusters, and derive constraints on cosmological parameters for a large, low systematic weak lensing survey, by focusing on the Ωm\Omega_m-σ8\sigma_8 plane and on the dark energy equation of state. We separate the power spectrum into the resolved and the unresolved parts of the data, the resolved part being defined as detected clusters, and the unresolved part as the rest of the field. We consider four kinds of clusters counts, taking into account different amount of information : signal-to-noise ratio peak counts; counts as a function of clusters' mass; counts as a function of clusters' redshift; and counts as a function of clusters' mass and redshift. We show that when combined with the power spectrum, those four kinds of counts provide similar constraints, thus allowing one to perform the most direct counts, signal-to-noise peaks counts, and get percent level constraints on cosmological parameters. We show that the weak lensing bispectrum gives constraints comparable to those given by the power spectrum and captures non-Gaussian features as well as clusters counts, its combination with the power spectrum giving errors on cosmological parameters that are similar to, if not marginally smaller than, those obtained when combining the power spectrum with cluster counts. We finally note that in order to reach its potential, the weak lensing bispectrum must be computed using all triangle configurations, as equilateral triangles alone do not provide useful information.Comment: Matches ApJ-accepted versio

    A Predictor-Informed Multi-Subject Bayesian Approach for Dynamic Functional Connectivity

    Full text link
    Time Varying Functional Connectivity (TVFC) investigates how the interactions among brain regions vary over the course of an fMRI experiment. The transitions between different individual connectivity states can be modulated by changes in underlying physiological mechanisms that drive functional network dynamics, e.g., changes in attention or cognitive effort as measured by pupil dilation. In this paper, we develop a multi-subject Bayesian framework for estimating dynamic functional networks as a function of time-varying exogenous physiological covariates that are simultaneously recorded in each subject during the fMRI experiment. More specifically, we consider a dynamic Gaussian graphical model approach, where a non-homogeneous hidden Markov model is employed to classify the fMRI time series into latent neurological states, borrowing strength over the entire time course of the experiment. The state-transition probabilities are assumed to vary over time and across subjects, as a function of the underlying covariates, allowing for the estimation of recurrent connectivity patterns and the sharing of networks among the subjects. Our modeling approach further assumes sparsity in the network structures, via shrinkage priors. We achieve edge selection in the estimated graph structures, by introducing a multi-comparison procedure for shrinkage-based inferences with Bayesian false discovery rate control. We apply our modeling framework on a resting-state experiment where fMRI data have been collected concurrently with pupillometry measurements, leading us to assess the heterogeneity of the effects of changes in pupil dilation, previously linked to changes in norepinephrine-containing locus coeruleus, on the subjects' propensity to change connectivity states

    The FORS Deep Field Spectroscopic Survey

    Full text link
    We present a catalogue and atlas of low-resolution spectra of a well defined sample of 341 objects in the FORS Deep Field. All spectra were obtained with the FORS instruments at the ESO VLT with essentially the same spectroscopic set-up. The observed extragalactic objects cover the redshift range 0.1 to 5.0. 98 objects are starburst galaxies and QSOs at z > 2. Using this data set we investigated the evolution of the characteristic spectral properties of bright starburst galaxies and their mutual relations as a function of the redshift. Significant evolutionary effects were found for redshifts 2 < z < 4. Most conspicuous are the increase of the average C IV absorption strength, of the dust reddening, and of the intrinsic UV luminosity, and the decrease of the average Ly alpha emission strength with decreasing redshift. In part the observed evolutionary effects can be attributed to an increase of the metallicity of the galaxies with cosmic age. Moreover, the increase of the total star-formation rates and the stronger obscuration of the starburst cores by dusty gas clouds suggest the occurrence of more massive starbursts at later cosmic epochs.Comment: 24 pages, 25 figures (35 PS files), 4 tables, accepted for publication in A&A. v2: minor typos corrected and references update

    Simultaneous measurement of cosmology and intrinsic alignments using joint cosmic shear and galaxy number density correlations

    Full text link
    Cosmic shear is a powerful method to constrain cosmology, provided that any systematic effects are under control. The intrinsic alignment of galaxies is expected to severely bias parameter estimates if not taken into account. We explore the potential of a joint analysis of tomographic galaxy ellipticity, galaxy number density, and ellipticity-number density cross-correlations to simultaneously constrain cosmology and self-calibrate unknown intrinsic alignment and galaxy bias contributions. We treat intrinsic alignments and galaxy biasing as free functions of scale and redshift and marginalise over the resulting parameter sets. Constraints on cosmology are calculated by combining the likelihoods from all two-point correlations between galaxy ellipticity and galaxy number density. The information required for these calculations is already available in a standard cosmic shear dataset. We include contributions to these functions from cosmic shear, intrinsic alignments, galaxy clustering and magnification effects. In a Fisher matrix analysis we compare our constraints with those from cosmic shear alone in the absence of intrinsic alignments. For a potential future large area survey, such as Euclid, the extra information from the additional correlation functions can make up for the additional free parameters in the intrinsic alignment and galaxy bias terms, depending on the flexibility in the models. For example, the Dark Energy Task Force figure of merit is recovered even when more than 100 free parameters are marginalised over. We find that the redshift quality requirements are similar to those calculated in the absence of intrinsic alignments.Comment: 22 pages, 10 figures; extended discussion, otherwise minor changes to match accepted version; published in Astronomy and Astrophysic

    Detection of Weak Gravitational Lensing by Large-scale Structure

    Get PDF
    We report a detection of the coherent distortion of faint galaxies arising from gravitational lensing by foreground structures. This ``cosmic shear'' is potentially the most direct measure of the mass power spectrum, as it is unaffected by poorly-justified assumptions made concerning the biasing of the distribution. Our detection is based on an initial imaging study of 14 separated 8' x 16' fields observed in good, homogeneous conditions with the prime focus EEV CCD camera of the 4.2m William Herschel Telescope. We detect an rms shear of 1.6% in 8' x 8' cells, with a significance of 3.4 sigma. We carefully justify this detection by quantifying various systematic effects and carrying out extensive simulations of the recovery of the shear signal from artificial images defined according to measured instrument characteristics. We also verify our detection by computing the cross-correlation between the shear in adjacent cells. Including (gaussian) cosmic variance, we measure the shear variance to be (0.016)^2 plus/minus (0.012)^2 plus/minus (0.006)^2, where these 1 sigma errors correspond to statistical and systematic uncertainties, respectively. Our measurements are consistent with the predictions of cluster-normalised CDM models (within 1 sigma) but a COBE-normalised SCDM model is ruled out at the 3.0 sigma level. For the currently-favoured Lambda-CDM model (with Omega_m = 0.3), our measurement provides a normalisation of the mass power spectrum of sigma_8 = 1.5 plus/minus 0.5, fully consistent with that derived from cluster abundances. Our result demonstrates that ground-based telescopes can, with adequate care, be used to constrain the mass power spectrum on various scales. The present results are limited mainly by cosmic variance, which can be overcome in the near future with more observations.Comment: 17 LaTex pages, including 13 figures and 3 tables. Accepted for publication in MNRAS, minor revisio
    corecore