710 research outputs found

    Discovery of new methylation markers to improve screening for cervical intraepithelial neoplasia grade 2/3

    Get PDF
    Background: Assessment of DNA promoter methylation markers in cervical scrapings for the detection of cervical intraepithelial neoplasia (CIN) and cervical cancer is feasible, but finding methylation markers with both high sensitivity as well as high specificity remains a challenge. In this study, we aimed to identify new methylation markers for the detection of high-grade CIN (CIN2/3 or worse, CIN2+) by using innovative genome-wide methylation analysis (MethylCap-seq). We focused on diagnostic performance of methylation markers with high sensitivity and high specificity considering any methylation level as positive. Results: MethylCap-seq of normal cervices and CIN2/3 revealed 176 differentially methylated regions (DMRs) comprising 164 genes. After verification and validation of the 15 best discriminating genes with methylation-specific PCR (MSP), 9 genes showed significant differential methylation in an independent cohort of normal cervices versus CIN2/3 lesions (p < 0.05). For further diagnostic evaluation, these 9 markers were tested with quantitative MSP (QMSP) in cervical scrapings from 2 cohorts: (1) cervical carcinoma versus healthy controls and (2) patients referred from population-based screening with an abnormal Pap smear in whom also HPV status was determined. Methylation levels of 8/9 genes were significantly higher in carcinoma compared to normal scrapings. For all 8 genes, methylation levels increased with the severity of the underlying histological lesion in scrapings from patients referred with an abnormal Pap smear. In addition, the diagnostic performance was investigated, using these 8 new genes and 4 genes (previously identified by our group: C13ORF18, JAM3, EPB41L3, and TERT). In a triage setting (after a positive Pap smear), sensitivity for CIN2+ of the best combination of genes (C13ORF18/JAM3/ANKRD18CP) (74 %) was comparable to hrHPV testing (79 %), while specificity was significantly higher (76 % versus 42 %, p <= 0.05). In addition, in hrHPV-positive scrapings, sensitivity and specificity for CIN2+ of this best-performing combination was comparable to the population referred with abnormal Pap smear. Conclusions: We identified new CIN2/3-specific methylation markers using genome-wide DNA methylation analysis. The diagnostic performance of our new methylation panel shows higher specificity, which should result in prevention of unnecessary colposcopies for women referred with abnormal cytology. In addition, these newly found markers might be applied as a triage test in hrHPV-positive women from population-based screening. The next step before implementation in primary screening programs will be validation in population-based cohorts

    DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation

    Get PDF
    Hematopoietic stem cells give rise to all blood cells in a differentiation process that involves widespread epigenome remodeling. Here we present genome-wide reference maps of the associated DNA methylation dynamics. We used a meta-epigenomic approach that combines DNA methylation profiles across many small pools of cells and performed single-cell methylome sequencing to assess cell-to-cell heterogeneity. The resulting dataset identified characteristic differences between HSCs derived from fetal liver, cord blood, bone marrow, and peripheral blood. We also observed lineage-specific DNA methylation between myeloid and lymphoid progenitors, characterized immature multi-lymphoid progenitors, and detected progressive DNA methylation differences in maturing megakaryocytes. We linked these patterns to gene expression, histone modifications, and chromatin accessibility, and we used machine learning to derive a model of human hematopoietic differentiation directly from DNA methylation data. Our results contribute to a better understanding of human hematopoietic stem cell differentiation and provide a framework for studying blood-linked diseases.This work was funded by the BLUEPRINT project (European Union’s Seventh Framework Programme grant 282510), the NIHR Cambridge Biomedical Research Centre, and the Austrian Academy of Sciences. F.A.C. is supported by a Medical Research Council Clinical Training Fellowship (grant MR/K024043/1). F.H. is supported by a postdoctoral fellowship of the German Research Council (DFG; grant HA 7723/1-1). J.K. is supported by a DOC Fellowship of the Austrian Academy of Sciences. W.H.O. is supported by the NIHR, BHF (grants PG-0310-1002 and RG/09/12/28096), and NHS Blood and Transplant. E.L. is supported by a Wellcome Trust Sir Henry Dale Fellowship (grant 107630/Z/15/Z) and core support grant from the Wellcome Trust and MRC to the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute. M. Frontini is supported by the BHF Cambridge Centre of Excellence (grant RE/13/6/30180). C.B. is supported by a New Frontiers Group award of the Austrian Academy of Sciences and by a European Research Council (ERC) Starting Grant (European Union’s Horizon 2020 research and innovation program; grant 679146)

    Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa)

    Get PDF
    For decades, linden trees (basswoods or lime trees), and particularly silver linden (Tilia tomentosa), have been linked to mass bee deaths. This phenomenon is often attributed to the purported occurrence of the carbohydrate mannose, which is toxic to bees, in Tilia nectar. In this review, however, we conclude that from existing literature there is no experimental evidence for toxicity to bees in linden nectar. Bee deaths on Tilia probably result from starvation, owing to insufficient nectar resources late in the tree's flowering period. We recommend ensuring sufficient alternative food sources in cities during late summer to reduce bee deaths on silver linden. Silver linden metabolites such as floral volatiles, pollen chemistry and nectar secondary compounds remain underexplored, particularly their toxic or behavioural effects on bees. Some evidence for the presence of caffeine in linden nectar may mean that linden trees can chemically deceive foraging bees to make sub-optimal foraging decisions, in some cases leading to their starvation

    ÎČ-thymosins and interstitial lung disease: study of a scleroderma cohort with a one-year follow-up

    Get PDF
    Background: beta-thymosins play roles in cytoskeleton rearrangement, angiogenesis, fibrosis and reparative process, thus suggesting a possible involvement in the pathogenesis of systemic sclerosis. The aim of the study was to investigate the presence of thymosins beta(4), beta(4) sulfoxide, and beta(10) in bronchoalveolar lavage fluid of scleroderma patients with interstitial lung disease and the relation of these factors with pulmonary functional and radiological parameters. Methods: beta-thymosins concentrations were determined by Reverse Phase-High Performance Liquid Chromatography-Electrospray-Mass Spectrometry in the bronchoalveolar lavage fluid of 46 scleroderma patients with lung involvement and of 15 controls. Results: Thymosin beta(4), beta(4) sulfoxide, and beta(10) were detectable in bronchoalveolar lavage fluid of patients and controls. Thymosin beta(4) levels were significantly higher in scleroderma patients than in controls. In addition, analyzing the progression of scleroderma lung disease at one-year follow-up, we have found that higher thymosin beta(4) levels seem to have a protective role against lung tissue damage. Thymosin beta(4) sulfoxide levels were higher in the smokers and in the scleroderma patients with alveolitis. Conclusions: We describe for the first time beta-thymosins in bronchoalveolar lavage fluid and their possible involvement in the pathogenesis of scleroderma lung disease. Thymosin beta(4) seems to have a protective role against lung tissue damage, while its oxidation product mirrors an alveolar inflammatory statu

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Pathological and Biological Differences Between Screen-Detected and Interval Ductal Carcinoma in situ of the Breast

    Get PDF
    Background: The incidence of ductal carcinoma in situ (DCIS) has risen dramatically with the introduction of screening mammography. The aim was to evaluate differences in pathological and biological characteristics between patients with screen-detected and interval DCIS. Methods: From January 1992 to December 2001, 128 consecutive patients had been treated for pure DCIS at our institute. From these, 102 had been attending the Dutch breast cancer screening program. Sufficient paraffin-embedded tissue was available in 74 out of the 102 cases to evaluate biological marker expression (Her2/neu, ER, PR, p53 and cyclin D1) on tissue microarrays (TMA group). Differences in clinicopathological characteristics and marker expression between screen-detected and interval patients were evaluated. Screen-detected DCIS was classified as DCIS detected by screening mammography, when the two-year earlier examination failed to reveal an abnormality. Interval patients were classified as patients with DCIS detected within the two-year interval between two subsequent screening rounds. Results: Screen-detected DCIS was related with linear branching and coarse granular microcalcifications on mammography (p < .001) and with high-grade DCIS according to the Van Nuys classification (p = .025). In univariate analysis, screen-detected DCIS was related with Her2/neu overexpression (odds ratio [OR] = 6.5; 95%CI 1.3-31.0; p = .020), and interval DCIS was associated with low-grade (Van Nuys, OR = 7.3; 95% CI 1.6-33.3; p = .010) and PR positivity (OR = 0.3; 95%CI 0.1-1.0; p = .042). The multivariate analysis displayed an independent relation of Her2/neu overexpression with screen-detected DCIS (OR = 12.8; 95%CI 1.6-104.0; p = .018). Conclusions: These findings suggest that screen-detected DCIS is biologically more aggressive than interval DCIS and should not be regarded as overdiagnosis

    Search for the standard model Higgs boson at LEP

    Get PDF

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore