28 research outputs found
Fully Point-wise Convolutional Neural Network for Modeling Statistical Regularities in Natural Images
Modeling statistical regularity plays an essential role in ill-posed image
processing problems. Recently, deep learning based methods have been presented
to implicitly learn statistical representation of pixel distributions in
natural images and leverage it as a constraint to facilitate subsequent tasks,
such as color constancy and image dehazing. However, the existing CNN
architecture is prone to variability and diversity of pixel intensity within
and between local regions, which may result in inaccurate statistical
representation. To address this problem, this paper presents a novel fully
point-wise CNN architecture for modeling statistical regularities in natural
images. Specifically, we propose to randomly shuffle the pixels in the origin
images and leverage the shuffled image as input to make CNN more concerned with
the statistical properties. Moreover, since the pixels in the shuffled image
are independent identically distributed, we can replace all the large
convolution kernels in CNN with point-wise () convolution kernels while
maintaining the representation ability. Experimental results on two
applications: color constancy and image dehazing, demonstrate the superiority
of our proposed network over the existing architectures, i.e., using
1/101/100 network parameters and computational cost while achieving
comparable performance.Comment: 9 pages, 7 figures. To appear in ACM MM 201
Three real-space discretization techniques in electronic structure calculations
A characteristic feature of the state-of-the-art of real-space methods in
electronic structure calculations is the diversity of the techniques used in
the discretization of the relevant partial differential equations. In this
context, the main approaches include finite-difference methods, various types
of finite-elements and wavelets. This paper reports on the results of several
code development projects that approach problems related to the electronic
structure using these three different discretization methods. We review the
ideas behind these methods, give examples of their applications, and discuss
their similarities and differences.Comment: 39 pages, 10 figures, accepted to a special issue of "physica status
solidi (b) - basic solid state physics" devoted to the CECAM workshop "State
of the art developments and perspectives of real-space electronic structure
techniques in condensed matter and molecular physics". v2: Minor stylistic
and typographical changes, partly inspired by referee comment