689 research outputs found
Mutual Event Observations of Io's Sodium Corona
We have measured the column density profile of Io's sodium corona using 10 mutual eclipses between the Galilean satellites. This approach circumvents the problem of spatially resolving Io's corona directly from Io's bright continuum in the presence of atmospheric seeing and telescopic scattering. The primary goal is to investigate the spatial and temporal variations of Io's corona. Spectra from the Keck Observatory and McDonald Observatory from 1997 reveal a corona that is only approximately spherically symmetric around Io. Comparing the globally averaged radial sodium column density profile in the corona with profiles measured in 1991 and 1985, we find that there has been no significant variation. However, there appears to be a previously undetected asymmetry: the corona above Io's sub-Jupiter hemisphere is consistently more dense than above the anti-Jupiter hemisphere
Carbon isotope fractionation and depletion in TMC1
12C/13C isotopologue abundance anomalies have long been predicted for
gas-phase chemistry in molecules other than CO and have recently been observed
in the Taurus molecular cloud in several species hosting more than one carbon
atom, i.e. CCH, CCS, CCCS and HCN. Here we work to ascertain whether these
isotopologic anomalies actually result from the predicted depletion of the 13C+
ion in an oxygen-rich optically-shielded dense gas, or from some other more
particular mechanism or mechanisms. We observed 3mm emission from
carbon, sulfur and nitrogen-bearing isotopologues of HNC, CS and \HH CS at
three positions in Taurus(TMC1, L1527 and the ammonia peak) using the ARO 12m
telescope. We saw no evidence of 12C/13C anomalies in our observations.
Although the pool of C+ is likely to be depleted in 13C 13C is not depleted in
the general pool of carbon outside CO, which probably exists mostly in the form
of C^0. The observed isotopologic abundance anomalies are peculiar to those
species in which they are found.Comment: Accepted for publication in The Astrophysical Journal (mail journal
Hubble Space Telescope Survey of Interstellar ^12CO/^13CO in the Solar Neighborhood
We examine 20 diffuse and translucent Galactic sight lines and extract the
column densities of the ^12CO and ^13CO isotopologues from their ultraviolet
A--X absorption bands detected in archival Space Telescope Imaging Spectrograph
data with lambda/Deltalambda geq 46,000. Five more targets with Goddard
High-Resolution Spectrograph data are added to the sample that more than
doubles the number of sight lines with published Hubble Space Telescope
observations of ^13CO. Most sight lines have 12-to-13 isotopic ratios that are
not significantly different from the local value of 70 for ^12C/^13C, which is
based on mm-wave observations of rotational lines in emission from CO and H_2CO
inside dense molecular clouds, as well as on results from optical measurements
of CH^+. Five of the 25 sight lines are found to be fractionated toward lower
12-to-13 values, while three sight lines in the sample are fractionated toward
higher ratios, signaling the predominance of either isotopic charge exchange or
selective photodissociation, respectively. There are no obvious trends of the
^12CO-to-^13CO ratio with physical conditions such as gas temperature or
density, yet ^12CO/^13CO does vary in a complicated manner with the column
density of either CO isotopologue, owing to varying levels of competition
between isotopic charge exchange and selective photodissociation in the
fractionation of CO. Finally, rotational temperatures of H_2 show that all
sight lines with detected amounts of ^13CO pass through gas that is on average
colder by 20 K than the gas without ^13CO. This colder gas is also sampled by
CN and C_2 molecules, the latter indicating gas kinetic temperatures of only 28
K, enough to facilitate an efficient charge exchange reaction that lowers the
value of ^12CO/^13CO.Comment: 1-column emulateapj, 23 pages, 9 figure
Chemical Analysis of a Diffuse Cloud along a Line of Sight Toward W51: Molecular Fraction and Cosmic-Ray Ionization Rate
Absorption lines from the molecules OH+, H2O+, and H3+ have been observed in
a diffuse molecular cloud along a line of sight near W51 IRS2. We present the
first chemical analysis that combines the information provided by all three of
these species. Together, OH+ and H2O+ are used to determine the molecular
hydrogen fraction in the outskirts of the observed cloud, as well as the
cosmic-ray ionization rate of atomic hydrogen. H3+ is used to infer the
cosmic-ray ionization rate of H2 in the molecular interior of the cloud, which
we find to be zeta_2=(4.8+-3.4)x10^-16 per second. Combining the results from
all three species we find an efficiency factor---defined as the ratio of the
formation rate of OH+ to the cosmic-ray ionization rate of H---of
epsilon=0.07+-0.04, much lower than predicted by chemical models. This is an
important step in the future use of OH+ and H2O+ on their own as tracers of the
cosmic-ray ionization rate.Comment: 21 pages, 1 figure, 4 table
Formation, fractionation and excitation of carbon monoxide in diffuse clouds
Aims: Our aims are threefold: a) To compare the and mm-wave results; b)
to interpret 13CO and 12CO abundances in terms of the physical processes which
separately and jointly determine them; c) to interpret observed J=1-0
rotational excitation and line brightness in terms of ambient gas properties.
Methods: A simple phenomenological model of CO formation as the immediate
descendant of quiescently-recombining HCO+ is used to study the accumulation,
fractionation and rotational excitation of CO in more explicit and detailed
models of H2-bearing diffuse/H I clouds
Results: The variation of N(CO) with N(H2) is explained by quiescent
recombination of a steady fraction n(HCO+)/n(H2) = 2 x 10^{-9}. Observed
N(12CO))/N(13CO) ratios generally do not require a special chemistry but result
from competing processes and do not provide much insight into the local gas
properties, especially the temperature. J=1-0 CO line brightnesses directly
represent N(CO), not N(H2), so the CO-H2 conversion factor varies widely; it
attains typical values at N(12CO) \la 10^{16}cm^{-2}. Models of CO rotational
excitation account for the line brightnesses and CO-H2 conversion factors but
readily reproduce the observed excitation temperatures and optical depths of
the rotational transitions only if excitation by H-atoms is weak -- as seems to
be the case for the very most recent calculations of these excitation rates.Comment: 11 pages, 6 figures, A&A 2007 or 2008 (in press
The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks
Aims. Photodissociation by UV light is an important destruction mechanism for
CO in many astrophysical environments, ranging from interstellar clouds to
protoplanetary disks. The aim of this work is to gain a better understanding of
the depth dependence and isotope-selective nature of this process.
Methods. We present a photodissociation model based on recent spectroscopic
data from the literature, which allows us to compute depth-dependent and
isotope-selective photodissociation rates at higher accuracy than in previous
work. The model includes self-shielding, mutual shielding and shielding by
atomic and molecular hydrogen, and it is the first such model to include the
rare isotopologues C17O and 13C17O. We couple it to a simple chemical network
to analyse CO abundances in diffuse and translucent clouds, photon-dominated
regions, and circumstellar disks.
Results. The photodissociation rate in the unattenuated interstellar
radiation field is 2.6e-10 s^-1, 30% higher than currently adopted values.
Increasing the excitation temperature or the Doppler width can reduce the
photodissociation rates and the isotopic selectivity by as much as a factor of
three for temperatures above 100 K. The model reproduces column densities
observed towards diffuse clouds and PDRs, and it offers an explanation for both
the enhanced and the reduced N(12CO)/N(13CO) ratios seen in diffuse clouds. The
photodissociation of C17O and 13C17O shows almost exactly the same depth
dependence as that of C18O and 13C18O, respectively, so 17O and 18O are equally
fractionated with respect to 16O. This supports the recent hypothesis that CO
photodissociation in the solar nebula is responsible for the anomalous 17O and
18O abundances in meteorites.Comment: Accepted by A&
Disk and outflow signatures in Orion-KL: The power of high-resolution thermal infrared spectroscopy
We used the CRIRES spectrograph on the VLT to study the ro-vibrational
12CO/13CO, the Pfund beta and H2 emission between 4.59 and 4.72mu wavelengths
toward the BN object, the disk candidate source n, and a proposed dust density
enhancement IRC3. We detected CO absorption and emission features toward all
three targets. Toward the BN object, the data partly confirm the results
obtained more than 25 years ago by Scoville et al., however, we also identify
several new features. While the blue-shifted absorption is likely due to
outflowing gas, toward the BN object we detect CO in emission extending in
diameter to ~3300AU. Although at the observational spectral resolution limit,
the 13CO line width of that feature increases with energy levels, consistent
with a disk origin. If one attributes the extended CO emission also to a disk
origin, its extent is consistent with other massive disk candidates in the
literature. For source n, we also find the blue-shifted CO absorption likely
from an outflow. However, it also exhibits a narrower range of redshifted CO
absorption and adjacent weak CO emission, consistent with infalling motions. We
do not spatially resolve the emission for source n. For both sources we conduct
a Boltzmann analysis of the 13CO absorption features and find temperatures
between 100 and 160K, and H2 column densities of the order a few times
10^23cm^-2. The observational signatures from IRC3 are very different with only
weak absorption against a much weaker continuum source. However, the CO
emission is extended and shows wedge-like position velocity signatures
consistent with jet-entrainment of molecular gas, potentially associated with
the Orion-KL outflow system. We also present and discuss the Pfund beta and H2
emission in the region.Comment: 12 pages, 15 pages, accepted for A&A, you find a high-resolution copy
at http://www.mpia-hd.mpg.de/homes/beuther/papers.htm
Measurement of two-halo neutron transfer reaction p(Li,Li)t at 3 MeV
The p(\nuc{11}{Li},\nuc{9}{Li})t reaction has been studied for the first time
at an incident energy of 3 MeV delivered by the new ISAC-2 facility at
TRIUMF. An active target detector MAYA, build at GANIL, was used for the
measurement. The differential cross sectionshave been determined for
transitions to the \nuc{9}{Li} ground andthe first excited states in a wide
range of scattering angles. Multistep transfer calculations using different
\nuc{11}{Li} model wave functions, shows that wave functions with strong
correlations between the halo neutrons are the most successful in reproducing
the observation.Comment: 6 pages, 3 figures, submitted to Physical Review Letter
CH radio emission from heiles cloud 2 as a tracer of molecular cloud evolution
A mapping observation of the -type doubling transition (3.3
GHz) of CH has been conducted toward Heiles Cloud 2 (HCL2) in the Taurus
molecular cloud complex to reveal its molecular cloud-scale distribution. The
observations were carried out with the Effelsberg 100 m telescope. The CH
emission is found to be extended over the whole region of HCL2. It is brighter
in the southeastern part, which encloses the TMC-1 cyanopolyyne peak than in
the northwestern part. Its distribution extends continuously from the peak of
the neutral carbon emission (CI peak) to the TMC-1 ridge, as if it were
connecting the distributions of the [C I] and CO emissions. Since CH is
an intermediate in gas-phase chemical reactions from C to CO, its emission
should trace the transition region. The above distribution of the CH emission
is consistent with this chemical behavior. Since the CH abundance is subject to
the chemical evolutionary effect, the CH column density in HCL2 no longer
follows a linear correlation wit the H column density reported for diffuse
and translucent clouds. More importantly, the CH line profile is found to be
composed of the narrow and broad components. Although the broad component is
dominant around the CI peak, the narrow component appears in the TMC-1 ridge
and dense core regions such as L1527 and TMC-1A. This trend seems to reflect a
narrowing of the line width during the formation of dense cores. These results
suggest that the 3.3 GHz CH line is a useful tool for tracing the chemical and
physical evolution of molecular clouds.Comment: 8 page
The Circumstellar Environment of High-Mass Protostellar Objects: IV. C17O Observations and Depletion
We observe 84 candidate young high-mass sources in the rare isotopologues
C17O and C18O to investigate whether there is evidence for depletion
(freeze-out) towards these objects. Observations of the J=2-1 transitions of
C18O and C17O are used to derive the column densities of gas towards the
sources and these are compared with those derived from submillimetre continuum
observations. The derived fractional abundance suggests that the CO species
show a range of degrees of depletion towards the objects. We then use the
radiative transfer code RATRAN to model a selection of the sources to confirm
that the spread of abundances is not a result of assumptions made when
calculating the column densities. We find a range of abundances of C17O that
cannot be accounted for by global variations in either the temperature or dust
properties and so must reflect source to source variations. The most likely
explanation is that different sources show different degrees of depletion of
the CO. Comparison of the C17O linewidths of our sources with those of CS
presented by other authors reveal a division of the sources into two groups.
Sources with a CS linewidth >3 km/s have low abundances of C17O while sources
with narrower CS lines have typically higher C17O abundances. We suggest that
this represents an evolutionary trend. Depletion towards these objects shows
that the gas remains cold and dense for long enough for the trace species to
deplete. The range of depletion measured suggests that these objects have
lifetimes of 2-4x10^5 years.Comment: 18 pages. Accepted for publication in Astronomy & Astrophysic
- …
