38 research outputs found

    Karbiidist sünteesitud poorsete mittegrafiitsete süsinike struktuuride uurimine ning nende mõju H2 liikuvusele

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneAktiveeritud süsiniku, mida kasutatakse toidumürgistuse raviks, leiab apteegiriiulitelt. See on peamiselt süsinikust koosnev materjal, mis sisaldab palju imeväikeseid augukesi ja avausi ehk poore. Need poorid moodustuvad kaardus ja defektsete grafeenist koosnevate lehekeste (ehk ühekihilise grafiidi) kihtide vahele. Aktiveeritud söega laias laastus sarnaste omadustega poorseid materjale kasutatakse palju ka muudes rakendustes. Üks põnevamaid neist on seotud energia salvestamisega. Nimelt on poorne süsinik keemiliselt üsna stabiilne, samas odav materjal, mis juhib hästi elektrit. Tänu nendele omadustele sobib poorne süsinik hästi energiasalvestus ja -muundamisseadmete nagu patareide, polümeerelektrolüütmembraankütuseelementide ja superkondensaatorite elektroodimaterjaliks. Tartu Ülikooli Füüsikalise keemia õppetoolis on sünteesitud ja elektroodimaterjalidena katsetatud tohutul hulgal eri sorte poorseid süsinikke. Üks süsinikmaterjalide liike, mida on süstemaatiliselt uuritud, on karbiididest sünteesitud süsinikmaterjalid. Karbiidid on ühendid, mis koosnevad tüüpiliselt kahest elemendist, millest üks on süsinik. Üks viise, kuidas karbiidist saab puhast süsinikku sünteesida, on panna valitud karbiid kõrgel temperatuuril (ehk sünteesitemperatuuril) reageerima klooriga. Muud reaktsioonisaadused uhutakse gaasivoos minema, reaktsiooninõusse jääb alles väga spetsiifiliste omadustega süsinikmaterjal. Mõnes mõttes võib sellest süsinikamaterjalist mõelda, kui algse karbiidi “skeletist”. Näiteks superkondensaatoreid tootev Eesti ettevõte Skeleton kasutab oma toodetes osaliselt just karbiidist sünteesitud süsinikmaterjale. Selles doktoritöös uuriti, kuidas muutub karbiidist sünteesitud süsiniku struktuur, kui sünteesitemperatuur on erinev või kuidas mõjutab struktuuri see, milline lähtekarbiid valiti. Selgus, et kui valitakse kõrgem sünteesitemperatuur, siis süsiniku sisse moodustuvad laiemad, vähem defektsed grafeenikihid. Osade lähtekarbiidide (Mo2C, VC) puhul kasvas sünteesitemperatuuri suurenedes ka graafeenikihtide virna kõrgus, kuid enamikes karbiisist sünteesitud süsinikes, mida uuriti, grafeenikihtide hulk sünteesitemperatuurist ei sõltunud. Molübdeenkarbiidist sünteesitud süsinike poorset struktuuri, mis muutub sünteesitemperatuuriga väga palju, vaadeldi lähemalt väikesenurgahajumise meetoditega. Selgus, et sünteesitemperatuuri kasvades keskmine poori läbimõõt suurenes ja moodustusid järjest siledamad ja rohkem pilu-kujulised poorid. Veel uuriti, kuidas karbiidist sünteesitud süsiniku poorne struktuur mõjutab seda, kui hästi lõksustab süsinikmaterjal vesiniku molekule. Selgus, et väike kogus vesinikku ränikarbiidist sünteesitud süsiniku poorides, oli tugevalt kinnipeetud, sisuliselt liikumatu, ka suhteliselt kõrgel temperatuuril 120 K (vesinik veeldub 20 K juures). Väike kogus vesinikku titaankarbiidist sünteesitud süsiniku poorides käitus sarnaselt vedel vesinikuga temperatuuril kuni 70 K. Seevastu väike kogus vesinikku, mis oli adsorbeerunud molübdeenkarbiidist sünteesitud süsiniku poorides ei olnud kuigi tugevalt kinnipeetud ja selle difusioon oli üsna kiire ka madalatel temperatuuridel. Selgus, et vesiniku lõksustamisel on oluline alla 1 nm läbimõõduga pooride hulk, mis on ränikarbiidist sünteesitud süsinikmaterjalis suurim. Veel on oluline asjaolu ka poori kuju, sest kuigi 1 nm pooride hulk oli nii räni kui ka titaankarbiidist sünteesitud süsinikes sarnane, oli ränikarbiidist sünteesitud süsinikus, mille keskmine poori kuju on sfääriline, H2 tugevamalt lõksustunud.Activated carbon can be found in the pharmacy and is used to cure food poisoning. It consists mostly of carbon and contains numerous minute holes and tunnels, which are called pores. There pores are formed in between the curved graphene (i.e. one-layered graphite) layers, which contain many defects. Carbon materials with similar properties to activated carbons have many different applications. One of these lies in the field of energy (or hydrogen) storage devices. Namely, since porous carbons are very stable, yet cheap materials, which conduct electricity, these materials are widely used as electrode materials in energy storage/conversion devices such as batteries, polymer electrolyte fuel cells and supercapacitors. In the chair of Physical Chemistry of the University of Tartu, numerous different porous carbon materials have been synthesized and used as electrode materials. One of the most widely studied types of porous carbons has been carbide-derived carbons (CDCs). Carbides are chemical compounds, that typically consist of two elements, one of which is carbon. In order to synthesize a CDC, the reaction between a precursor carbide and chlorine gas at high temperature (i.e. the synthesis temperature) is typically conducted. As a result of this reaction, only pure carbon material particles are left in the reaction vessel, since other products of the reaction are washed away with excess gas. In a way the synthesized carbon can be seen as the „skeleton“ of the precursor carbide. Actually, the Estonian company Skeleton, that produces supercapacitors, partly uses CDCs in its products. In this PhD thesis, the differences in the microstructure of CDCs, with respect to the synthesis temperature and/or the precursor carbide, was studied. It was seen that higher synthesis temperatures resulted in the formation of wider platelets of graphene, which contained less defects. In the case of some precursor carbides (Mo2C, VC), also the average height of the stack of graphene platelets increased, but for most studied CDC materials the height of the stack remained independent of the synthesis temperature. The porous structure of molybdenum carbide derived carbon is highly dependent on the synthesis temperature and this was studied in detail with small-angle scattering methods. It was seen that as the synthesis temperature of the CDC increased, the pores in the CDC became smoother and the average shape of the pores became more slit-like. In addition, the diffusion of hydrogen in the pores of three different CDC materials was studied with quasi-elastic neutron scattering. It was established, that a small amount of hydrogen is very strongly confined (i.e. practically immobile) in the subnanometer pores of silicon carbide derived carbon up to relatively high temperature of 120 K (hydrogen liquefies at 20 K). However, the mobility of a small amount of H2 in the pores of titanium carbide derived carbon showed similar characteristics to liquid hydrogen up to temperature of 70 K. The third CDC, in which the mobility of H2 was studied was derived from molybdenum carbide. The pores in molybdenum carbide derived carbon were not very effective in confining hydrogen, since the diffusion of hydrogen was seen to be quite quick already in the case of low temperatures and low H2 amounts. It was seen that a large amount of subnanometer pores is paramount for the successful confinement of H2 in a porous carbon material, since the carbon derived from silicon carbide contained the most of subnanometer pores. In addition, the shape of the pore also impacts the success of the confinement of H2. Namely, the amount of subnanometer pores was similar for both silicon and titanium carbide derived carbon materials, but H2 was more strongly confined in silicon carbide derived carbons, in which the average shape of the pore is spherical.https://www.ester.ee/record=b548582

    Aktiveeritud süsinike mikrostruktuuri ja poorsuse mõju elektrilise kaksikkihi kondensaatorite omadustele

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneKuna elektrijaamu (tuule-, päikese-, hüdro-, tuumaenergia jne) mugavalt kaasas kanda ei saa, on ikka vaja uuemaid ja paremaid energiasalvestusseadmeid, mida saab tasku panna. Energiat saab salvestada näiteks superkondensaatorisse. Energiasalvestusseadmeid iseloomustab nende energia ja võimsus. Mida rohkem energiat saab seadmesse, näiteks elektriauto akusse, salvestada, seda kaugemale saab see auto sõita enne, kui aku tühjaks saab. Kui sama aku on ka suure võimsusega, siis suudab see aku energiat kiiremini välja anda ehk auto kiirendus on suurem. Superkondensaatorid on väga hea võimsusega energiasalvestusseadmed (hind võimuse ühiku kohta 4500 EUR (kWh)−1). Seega kasutatakse superkondensaatoreid põhiliselt rakendustes, kus on oluline energiat salvestada/kätte saada väga kiiresti. Näiteks nutitelefoni kaamera välk saab oma energia superkondensaatorilt. Üks tähtsamaid superkondensaatori koostisosi on elektroodid. Tavaliselt tehakse elektroodid poorsest süsinikust, mis on olemuselt sarnane aktiivsöega, mida kasutatakse näiteks söetablettides. Poorseid süsinikke iseloomustab eripind ehk suur pindala väikese massi kohta. Selles töös sünteesiti mitmeid huvitava ehitusega suure eripinnaga süsinikmaterjale, kasutades lähteainetena glükoosi, sahharoosi ja turvast. Sünteesitud süsinikmaterjalidest tehti edasi superkondensaatori elektroodid ja neid kasutati superkondensaatori katserakus. Nähti, et mõned sünteesitud materjalid koosnesid 1 μm (umbes 100 korda väiksem kui juuksekarva läbimõõt) kerakujulistest osakestest. Nende väikeste sfääride sees on keeruline poorne võrgustik, mille eripind oli suurusjärgus 2000 m2 g−1 ja kuhu pääsevad ligi ioonid ja molekulid. Uurimuse käigus selgus, et igasuguse suurusega poorid pole võrdselt head selleks, et saada suure võimsusega superkondensaatorit. Selgus, et suure võimsusega superkondensaatorite valmistamiseks on äärmiselt vajalikud poorid, mille läbimõõt on ligi 1 nm või laiem (läbimõõt, mis on sarnane DNA molekuli läbimõõdule).Since the conventional power plants (wind, solar, hydro, nuclear, etc) currently do not fit in the pocket there is still an ever-increasing problem of needing newer and better energy storage devices. A part of the solution seems to come in the form of a device called supercapacitor. At first approximation, any energy storage system can be described by two main key parameters: energy and power. An electric car with a high energy battery system means it can drive further without needing to refill. If the same system had high power, then the car's acceleration from would be fast. That said, at equal basis, supercapacitors are considered to be cheap for obtaining high power values (4500 EUR (kWh)−1). Thus supercapacitors are used in applications that require high power intakes and outputs. For example, a smartphone camera uses supercapacitors for the flash. One of the most influential supercapacitor components is electrodes. Most commonly the electrodes are made of carbon materials that are in nature similar to the carbon materials used in charcoal tablet and carbon materials in water filters. They all function because of a high active surface area. In the current study, several promising high surface area carbon materials were synthesised using glucose, saccharose and peat as precursors. Resulting materials were meticulously evaluated in a supercapacitor test cell and interpreted using modern structural analysis methods. Obtained results revealed that some synthesised materials consisted of 1 m (about 100 times smaller than the diameter of a human hair) spherical particles. Inside of these extremely small particles lays a complex porous network where a lot of additional surfaces is located (>2000 m2 g−1). These pores are accessible to small particles like ions and molecules that can find a home at pores. However, not all pores are equally good. Data indicated that the best pores for making high power supercapacitors were approximately 1 nm in diameter or wider (close to the diameter of a DNA molecule).https://www.ester.ee/record=b536185

    Tsinkkloriidi ja kaaliumhüdroksiidiga aktiveeritud süsinikmaterjalid mittevesilahustel baseeruvatele superkondensaatoritele

    Get PDF
    Käesoleva töö eesmärgiks oli optimeerida D-glükoosist sünteesitud süsiniku keemilise aktiveerimise protsessi tingimusi ja hinnata sünteesitud süsinikmaterjalide sobivust elektrilise kaksikkihi kondensaatorite (EKKK) elektroodimaterjalideks. Elektroodimaterjalide valmistamiseks sünteesiti Dglükoosi vesilahusest hüdrotermilise karboniseerimise meetodil süsinikurikas materjal, mida järelaktiveeriti ZnCl2, KOH või nende seguga. Lõpliku süsinikmaterjali iseloomustati N2 ja CO2 sorptsiooni, röntgendifraktsiooni, Raman spektroskoopia ja skaneeriva elektronmikroskoopia meetoditega. Aktiveeritud süsinike elektrokeemiliseks iseloomustamiseks kasutati tsüklilist voltamperomeetriat, impedantsspektroskoopiat ja konstantse voolu ja konstantse võimsuse meetodeid. Süsinikmaterjal, mille saamiseks aktiveeriti algset süsinikurikast materjali 700 ° juures KOH massiga vahekorras 1:4, oli kõige poorsema struktuuriga (eripind SBET = 2150 m2 g-1, mikropooride pindala Smicro = 2140 m2 g-1 ja pooride koguruumala Vtot = 1.01 cm3 g-1). Leiti, et nimetatud süsinikmaterjalidel on lai ideaalse polariseeritavuse ala ΔV ≤ 3,0 V, väga lühikesed ajakonstandid (0,66 s) ja kõrged erimahtuvused (134 F g-1), mis näitab nende sobilikkust suure energia- ja võimsusetihedusega EKKK

    Seitsme erineva mikropoorse süsiniku struktuuri iseloomustamine kasutades Raman spektroskoopia meetodit ning erinevaid analüüsimudeleid

    Get PDF
    Suure eripinnaga süsinikmaterjalid on ulatuslikult kasutatavad adsorbendid, mille struktuuri saab laias ulatuses varieerida. Tänu sellele on võimalik luua eri kasutusvaldkondade nagu superkondensaatorid, vesiniku salvestamine jmt jaoks optimeeritud omadustega ning efektiivselt toimivaid süsinikmaterjale. Samas selleks, et leida kindla rakendusala jaoks optimaalse struktuuriga süsinikmaterjali, on oluline osata süsinikmaterjalide struktuure korrektselt iseloomustada. Süsinikmaterjalide iseloomustamiseks kasutatakse laialt Raman spektroskoopiat, sest see on üsna lihtne, kiire ja mittedestruktiivne meetod, mis võimaldab saada süsinike kohta palju informatsiooni. Süsiniku Raman spektritelt kvantitatiivse info saamiseks on tuletatud ka erinevaid empiirilisi valemeid, kuid materjalid, mille Raman spektrite põhjal need võrrandid tuletatud on, ei sarnane superkondensaatorites, patareides ja vesiniku salvestamises kasutatavate süsinikmaterjalidega. Seetõttu uuritigi, kas ja mil määral on olemasolevad empiirilised võrrandid rakendatavad mikropoorsetele süsinikmaterjalidele. Tulemuseks saadi, et empiirilised valemid mikropoorsete süsinike Raman spektritest info saamiseks hästi ei sobi ning Raman spektroskoopia rakendamiseks sellistel materjalidel on vajalik seniseid mudeleid veelgi täiustada

    Sõna εὐθύς tähendusväljast Markuse evangeeliumis

    Get PDF
    Sõnaühend καὶ εὐθὺς ei ole Markuse evangeeliumis mitmetes kirjakohtades otseselt mõistetav. Kui aga sõna tõlgendada vastavalt LXXst saadud vastele heebrea keelest wehinnē , mis omakorda vastab tähendusväljalt kreeka keelsele ühendile καὶ ἰδού, siis muutub tekst mõistetavamaks. Aluse sõna tõlgendamiseks sellisel viisil annab ennekõike LXX saadud tõlkevaste, kuid ka asjaolu, et Markus pole kasutanud teistele sünoptikutele omast osutavat väljendit καὶ ἰδού

    Synthesis and Characterization of Cobalt and Nitrogen Co Doped Peat Derived Carbon Catalysts for Oxygen Reduction in Acidic Media

    Get PDF
    In this study, several peat derived carbons PDC were synthesized using various carbonization protocols. It was found that depending on the carbonization method, carbons with very different surface morphologies, elemental compositions, porosities, and oxygen reduction reaction ORR activities were obtained. Five carbons were used as carbon supports to synthesize Co N PDC catalysts, and five different ORR catalysts were acquired. The surface analysis revealed that a higher nitrogen content, number of surface oxide defects, and higher specific surface area lead to higher ORR activity of the Co N PDC catalysts in acidic solution. The catalyst Co N C 2 ZnCl2 , which was synthesized from ZnCl2 activated and pyrolyzed peat, showed the highest ORR activity in both rotating disk electrode and polymer electrolyte membrane fuel cell tests. A maximum power density value of 210 mW cm2 has been obtained. The results of this study indicate that PDCs are promising candidates for the synthesis of active non platinum group metal type catalyst

    Pore wall corrugation effect on the dynamics of adsorbed H 2 studied by in situ quasi elastic neutron scattering Observation of two timescaled diffusion

    Get PDF
    The self diffusion mechanisms for adsorbed H2 in different porous structures are investigated with in situ quasi elastic neutron scattering method at a temperature range from 50 K to 100 K and at various H2 loadings. The porous structures of the carbon materials have been characterized by sorption analysis with four different gases and the results are correlated with previous in depth analysis with small angle neutron scattering method. Thus, an investigation discussing the effect of pore shape and size on the nature of adsorbed H2 self diffusion is performed. It is shown that H2 adsorbed in nanometer scale pores is self diffusing in two distinguishable timescales. The effect of the pore, pore wall shape and corrugation on the fraction of confined and more mobile H2 is determined and analyzed. The increased corrugation of the pore walls is shown to have a stronger confining effect on the H2 motions. The difference of self diffusional properties of the two H2 components are shown to be smaller when adsorbed in smoother walled pores. This is attributed to the pore wall corrugation effect on the homogeneity of formed adsorbed layer

    Recent advances in hydrothermal carbonisation:from tailored carbon materials and biochemicals to applications and bioenergy

    Get PDF
    Introduced in the literature in 1913 by Bergius, who at the time was studying biomass coalification, hydrothermal carbonisation, as many other technologies based on renewables, was forgotten during the "industrial revolution". It was rediscovered back in 2005, on the one hand, to follow the trend set by Bergius of biomass to coal conversion for decentralised energy generation, and on the other hand as a novel green method to prepare advanced carbon materials and chemicals from biomass in water, at mild temperature, for energy storage and conversion and environmental protection. In this review, we will present an overview on the latest trends in hydrothermal carbonisation including biomass to bioenergy conversion, upgrading of hydrothermal carbons to fuels over heterogeneous catalysts, advanced carbon materials and their applications in batteries, electrocatalysis and heterogeneous catalysis and finally an analysis of the chemicals in the liquid phase as well as a new family of fluorescent nanomaterials formed at the interface between the liquid and solid phases, known as hydrothermal carbon nanodots

    Modification of micro/mesoporous carbon synthesis method from well decomposed peat using ZnCl2 additional activation step

    No full text
    ZnCl2 activation method was used to synthesize micro- and mesoporous carbon material from Estonian well decomposed peat. The synthesized material with the ZnCl2 activation step has an SBET value of 1270 m2 g─1, compared to the SBET value of 270 m2 g─1 without the activation step. The material was tested as an electrode material in a supercapacitor cell with ionic liquid as an electrolyte. The cyclic voltammetry, impedance spectroscopy and constant current charge/discharge cycles data show that the material is useable for stationary electricity storage in local small-scale wind farms and local PV electricity generating fields. The constant power test data show that very high energy densities E = 50 Wh kg─1 at moderate power densities P = 10 kW kg─1 can be achieved
    corecore