445 research outputs found
Total and Differential Leukocyte Counts in Relation to Incidence of Diabetes Mellitus: A Prospective Population-Based Cohort Study
Objective: High concentrations of leukocytes in blood have been associated with diabetes mellitus. This prospective study aimed to explore whether total and differential leukocyte counts are associated with incidence of diabetes. A missense variant R262W in the SH2B3 (SH2B adaptor protein 3) gene, coding for a protein that negatively regulates hematopoietic cell proliferation, was also studied in relation to incidence of diabetes. Methods and Results: Leukocyte count and its subtypes (neutrophils, lymphocytes and mixed cells) were analyzed in 26,667 men and women, 45–73 years old, from the population-based Malmö Diet and Cancer study. Information about the R262W polymorphism (rs3184504) in SH2B3 was genotyped in 24,489 subjects. Incidence of diabetes was studied during a mean follow-up of 14 years. Cox proportional hazards regression was used to examine incidence of diabetes by total and differential leukocyte counts. Mendelian randomization analysis using R262W as an instrumental variable was performed with two-stage least squares regression. A total of 2,946 subjects developed diabetes during the follow-up period. After taking several possible confounders into account, concentrations of total leukocyte count, neutrophils and lymphocytes were all significantly associated with incidence of diabetes. The adjusted hazard ratios (95% confidence interval; quartile 4 vs quartile 1) were 1.37 (1.22–1.53) for total leukocytes, 1.33 (1.19–1.49) for neutrophils and 1.29 (1.15–1.44) for lymphocytes. The R262W polymorphism was strongly associated with leukocytes (0.11x109 cells/l per T allele, p = 1.14 x10-12), lymphocytes (p = 4.3 x10-16), neutrophils (p = 8.0 x10-6) and mixed cells (p = 3.0 x10-6). However, there was no significant association between R262W and fasting glucose, HbA1c or incidence of diabetes. Conclusions: Concentrations of total leukocytes, neutrophils and lymphocytes are associated with incidence of diabetes. However, the lack of association with the R262W polymorphism suggests that the associations may not be causal, although limitations in statistical power and balancing pleiotropic effects cannot be excluded
Predation effects on mean time to extinction under demographic stochasticity
Methods for predicting the probability and timing of a species' extinction
are typically based on a combination of theoretical models and empirical data,
and focus on single species population dynamics. Of course, species also
interact with each other, forming more or less complex networks of
interactions. Models to assess extinction risk often lack explicit
incorporation of these interspecific interactions. We study a birth and death
process in which the death rate includes an effect from predation. This
predation rate is included via a general nonlinear expression for the
functional response of predation to prey density. We investigate the effects of
the foraging parameters (e.g. attack rate and handling time) on the mean time
to extinction. Mean time to extinction varies by orders of magnitude when we
alter the foraging parameters, even when we exclude the effects of these
parameters on the equilibrium population size. In particular we observe an
exponential dependence of the mean time to extinction on handling time. These
findings clearly show that accounting for the nature of interspecific
interactions is likely to be critically important when estimating extinction
risk.Comment: 11 pages, 4 figures; Typos removed. For further discussion about the
paper go to http://purl.org/net/extinctio
Increased power of mixed models facilitates association mapping of 10 loci for metabolic traits in an isolated population
The potential benefits of using population isolates in genetic mapping, such as reduced genetic, phenotypic and environmental heterogeneity, are offset by the challenges posed by the large amounts of direct and cryptic relatedness in these populations confounding basic assumptions of independence. We have evaluated four representative specialized methods for association testing in the presence of relatedness; (i) within-family (ii) within- and between-family and (iii) mixed-models methods, using simulated traits for 2906 subjects with known genome-wide genotype data from an extremely isolated population, the Island of Kosrae, Federated States of Micronesia. We report that mixed models optimally extract association information from such samples, demonstrating 88% power to rank the true variant as among the top 10 genome-wide with 56% achieving genome-wide significance, a >80% improvement over the other methods, and demonstrate that population isolates have similar power to non-isolate populations for observing variants of known effects. We then used the mixed-model method to reanalyze data for 17 published phenotypes relating to metabolic traits and electrocardiographic measures, along with another 8 previously unreported. We replicate nine genome-wide significant associations with known loci of plasma cholesterol, high-density lipoprotein, low-density lipoprotein, triglycerides, thyroid stimulating hormone, homocysteine, C-reactive protein and uric acid, with only one detected in the previous analysis of the same traits. Further, we leveraged shared identity-by-descent genetic segments in the region of the uric acid locus to fine-map the signal, refining the known locus by a factor of 4. Finally, we report a novel associations for height (rs17629022, P< 2.1 × 10−8
Genetic risk prediction of atrial fibrillation
Background—Atrial fibrillation (AF) has a substantial genetic basis. Identification of individuals at greatest AF risk could minimize the incidence of cardioembolic stroke.
Methods—To determine whether genetic data can stratify risk for development of AF, we examined associations between AF genetic risk scores and incident AF in five prospective studies comprising 18,919 individuals of European ancestry. We examined associations between AF genetic risk scores and ischemic stroke in a separate study of 509 ischemic stroke cases (202 cardioembolic [40%]) and 3,028 referents. Scores were based on 11 to 719 common variants (≥5%) associated with AF at P-values ranging from <1x10-3 to <1x10-8 in a prior independent genetic association study.
Results—Incident AF occurred in 1,032 (5.5%) individuals. AF genetic risk scores were associated with new-onset AF after adjusting for clinical risk factors. The pooled hazard ratio for incident AF for the highest versus lowest quartile of genetic risk scores ranged from 1.28 (719 variants; 95%CI, 1.13-1.46; P=1.5x10-4) to 1.67 (25 variants; 95%CI, 1.47-1.90; P=9.3x10-15). Discrimination of combined clinical and genetic risk scores varied across studies and scores (maximum C statistic, 0.629-0.811; maximum ΔC statistic from clinical score alone, 0.009-0.017). AF genetic risk was associated with stroke in age- and sex-adjusted models. For example, individuals in the highest versus lowest quartile of a 127-variant score had a 2.49-fold increased odds of cardioembolic stroke (95%CI, 1.39-4.58; P=2.7x10-3). The effect persisted after excluding individuals (n=70) with known AF (odds ratio, 2.25; 95%CI, 1.20-4.40; P=0.01).
Conclusions—Comprehensive AF genetic risk scores were associated with incident AF beyond associations for clinical AF risk factors, though offered small improvements in discrimination. AF genetic risk was also associated with cardioembolic stroke in age- and sex-adjusted analyses. Efforts are warranted to determine whether AF genetic risk may improve identification of subclinical AF or help distinguish between stroke mechanisms
Risk Profiles for Aortic Dissection and Ruptured or Surgically Treated Aneurysms: A Prospective Cohort Study
Background: Community screening to guide preventive interventions for acute aortic disease has been recommended in high‐risk individuals. We sought to prospectively assess risk factors in the general population for aortic dissection (AD) and severe aneurysmal disease in the thoracic and abdominal aorta. Methods and Results: We studied the incidence of AD and ruptured or surgically treated aneurysms in the abdominal (AAA) or thoracic aorta (TAA) in 30 412 individuals without diagnosis of aortic disease at baseline from a contemporary, prospective cohort of middle‐aged individuals, the Malmö Diet and Cancer study. During up to 20 years of follow‐up (median 16 years), the incidence rate per 100 000 patient‐years at risk was 15 (95% CI 11.7 to 18.9) for AD, 27 (95% CI 22.5 to 32.1) for AAA, and 9 (95% CI 6.8 to 12.6) for TAA. The acute and in‐hospital mortality was 39% for AD, 34% for ruptured AAA, and 41% for ruptured TAA. Hypertension was present in 86% of individuals who subsequently developed AD, was strongly associated with incident AD (hazard ratio [HR] 2.64, 95% CI 1.33 to 5.25), and conferred a population‐attributable risk of 54%. Hypertension was also a risk factor for AAA with a smaller effect. Smoking (HR 5.07, 95% CI 3.52 to 7.29) and high apolipoprotein B/A1 ratio (HR 2.48, 95% CI 1.73 to 3.54) were strongly associated with AAA and conferred a population‐attributable risk of 47% and 25%, respectively. Smoking was also a risk factor for AD and TAA with smaller effects. Conclusions: This large prospective study identified distinct risk factor profiles for different aortic diseases in the general population. Hypertension accounted for more than half of the population risk for AD, and smoking for half of the population risk of AAA
Changes in sea floor productivity are crucial to understanding the impact of climate change in temperate coastal ecosystems according to a new size-based model
The multifaceted effects od climarte changfe on physical and blogeochemical process are rapidly altering marine ecosystems but often are considered in isolation, leaving our understanding of interactions between these drivers of ecosystem change relatively poor. This is particularly true for shallow coastal ecosystems, which are fuelled by a combination of distinct pelagic and benthic energy pathways that may respond to climate change in fundamentally distinct ways. The fish production supported by these systems is likely to be impacted by climate change differently to those of offshore and shelf ecosystems, which have relatively simpler food webs and mostly lack benthic primary production sources. We developed a novel, multispecies size spectrum model for shallow coastal reefs, specifically designed to simulate potential interactive outcomes of changing benthic and pelagic energy inputs and temperatures and calculate the relative importance of these variables for the fish community. Our model, calibrated using field data from an extensive temperate reef monitoring program, predicts that changes in resource levels will have much stronger impacts on fish biomass and yields than changes driven by physiological responses to temperature. Under increased plankton abundance, species in all fish trophic groups were predicted to increase in biomass, average size, and yields. By contrast, changes in benthic resources produced variable responses across fish trophic groups. Increased benthic resources led to increasing benthivorous and piscivorous fish biomasses, yields, and mean body sizes, but biomass decreases among herbivore and planktivore species. When resource changes were combined with warming seas, physiological responses generally decreased species biomass and yields. Our results suggest that understanding changes in benthic production and its implications for coastal fisheries should be a priority research area. Our modified size spectrum model provides a framework for further study of benthic and pelagic energy pathways that can be easily adapted to other ecosystems
Lipoprotein-associated phospholipase A2 activity, genetics and calcific aortic valve stenosis in humans.
BACKGROUND: Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity has been shown to predict calcific aortic valve stenosis (CAVS) outcomes. Our objective was to test the association between plasma Lp-PLA2 activity and genetically elevated Lp-PLA2 mass/activity with CAVS in humans. METHODS AND RESULTS: Lp-PLA2 activity was measured in 890 patients undergoing cardiac surgery, including 476 patients undergoing aortic valve replacement for CAVS and 414 control patients undergoing coronary artery bypass grafting. After multivariable adjustment, Lp-PLA2 activity was positively associated with the presence of CAVS (OR=1.21 (95% CI 1.04 to 1.41) per SD increment). We selected four single nucleotide polymorphisms (SNPs) at the PLA2G7 locus associated with either Lp-PLA2 mass or activity (rs7756935, rs1421368, rs1805017 and rs4498351). Genetic association studies were performed in eight cohorts: Quebec-CAVS (1009 cases/1017 controls), UK Biobank (1350 cases/349 043 controls), European Prospective Investigation into Cancer and Nutrition-Norfolk (504 cases/20 307 controls), Genetic Epidemiology Research on Aging (3469 cases/51 723 controls), Malmö Diet and Cancer Study (682 cases/5963 controls) and three French cohorts (3123 cases/6532 controls), totalling 10 137 CAVS cases and 434 585 controls. A fixed-effect meta-analysis using the inverse-variance weighted method revealed that none of the four SNPs was associated with CAVS (OR=0.99 (95% CI 0.96 to 1.02, p=0.55) for rs7756935, 0.97 (95% CI 0.93 to 1.01, p=0.11) for rs1421368, 1.00 (95% CI 1.00 to 1.01, p=0.29) for rs1805017, and 1.00 (95% CI 0.97 to 1.04, p=0.87) for rs4498351). CONCLUSIONS: Higher Lp-PLA2 activity is significantly associated with the presence of CAVS and might represent a biomarker of CAVS in patients with heart disease. Results of our genetic association study suggest that Lp-PLA2 is however unlikely to represent a causal risk factor or therapeutic target for CAVS
Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study
Background:
Lipoprotein(a) concentrations in plasma are associated with cardiovascular risk in the general population. Whether lipoprotein(a) concentrations or LPA genetic variants predict long-term mortality in patients with established coronary heart disease remains less clear.
Methods:
We obtained data from 3313 patients with established coronary heart disease in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. We tested associations of tertiles of lipoprotein(a) concentration in plasma and two LPA single-nucleotide polymorphisms ([SNPs] rs10455872 and rs3798220) with all-cause mortality and cardiovascular mortality by Cox regression analysis and with severity of disease by generalised linear modelling, with and without adjustment for age, sex, diabetes diagnosis, systolic blood pressure, BMI, smoking status, estimated glomerular filtration rate, LDL-cholesterol concentration, and use of lipid-lowering therapy. Results for plasma lipoprotein(a) concentrations were validated in five independent studies involving 10 195 patients with established coronary heart disease. Results for genetic associations were replicated through large-scale collaborative analysis in the GENIUS-CHD consortium, comprising 106 353 patients with established coronary heart disease and 19 332 deaths in 22 studies or cohorts.
Findings:
The median follow-up was 9·9 years. Increased severity of coronary heart disease was associated with lipoprotein(a) concentrations in plasma in the highest tertile (adjusted hazard radio [HR] 1·44, 95% CI 1·14–1·83) and the presence of either LPA SNP (1·88, 1·40–2·53). No associations were found in LURIC with all-cause mortality (highest tertile of lipoprotein(a) concentration in plasma 0·95, 0·81–1·11 and either LPA SNP 1·10, 0·92–1·31) or cardiovascular mortality (0·99, 0·81–1·2 and 1·13, 0·90–1·40, respectively) or in the validation studies.
Interpretation:
In patients with prevalent coronary heart disease, lipoprotein(a) concentrations and genetic variants showed no associations with mortality. We conclude that these variables are not useful risk factors to measure to predict progression to death after coronary heart disease is established.
Funding:
Seventh Framework Programme for Research and Technical Development (AtheroRemo and RiskyCAD), INTERREG IV Oberrhein Programme, Deutsche Nierenstiftung, Else-Kroener Fresenius Foundation, Deutsche Stiftung für Herzforschung, Deutsche Forschungsgemeinschaft, Saarland University, German Federal Ministry of Education and Research, Willy Robert Pitzer Foundation, and Waldburg-Zeil Clinics Isny
- …