171 research outputs found

    Microalgae biorefinery alternatives and hazard evaluation

    Get PDF
    Biodiesel production based on microalgae and using carbon dioxide as feedstock constitutes an attractive biofuel alternative. Technology development and process optimization are necessary to minimize the overall production cost. Moreover, in the framework of process sustainability, social and environmental impacts should include process safety aspects. In this context, the objective of this work is to develop a biodiesel production process based on microalgae and the subsequent estimation of the associated risks, thus contributing to more sustainable and safe processes. The biodiesel biorefinery is optimized, taking into account alternative configurations for algae cultivation and lipid extraction. Algae cultivation options are open ponds and tubular photobioreactors. Regarding lipid extraction, dewatering and subsequent n-hexane extraction, and combined ethanol/n-hexane extraction are the studied alternatives. Numerical results showed that open ponds and n-hexane extraction provide maximum net present value. However, n-hexane consumption dramatically rises, and industrial hazards have not been considered in the optimization process. To overcome this issue, a preliminary hazard analysis is carried out to identify hazardous materials and operations. Event trees are formulated to derive the frequencies of different accident scenarios, further determining the consequences. The major consequences of accidents involve toxic releases of high quantities of n-hexane. By comparing the proposed alternatives, this work aims to highlight the need to consider not only economic but also safety and environmental objectives in the development of a biodiesel production project.The authors are grateful for the financial support provided by CONICET and the Spanish MICINN under projects CTQ2013-48280-C3-1-R and CTM2014-57833-R. J. Pinedo would also like to thank the financial support provided by “Becas Iberoamérica JPI España 2014”

    Effect of light intensity, light duration and photoperiods in the performance of an outdoor photobioreactor for urban wastewater treatment

    Full text link
    [EN] A series of eight experiments were carried out to analyse the effects of light intensity, light duration and photoperiods on a microalgae culture for treating AnMBR effluent at an outdoor photobioreactor (PBR) plant. Improved performance was achieved in terms of nutrient recovery rates, biomass productivity and effluent nutrient concentrations at a higher net photon flux. However, the higher irradiance was also responsible for lower biomass productivity:light irradiance ratios. None of the experiments with different lighting regimes and the same net photon flux showed any significant differences. The data obtained suggest that microalgae performance in this system did not depend on the time of day when light was applied or the length of the photoperiods, but on the net photon flux. No photoinhibiton was observed in any of the experiments, probably because of the significant shadow effect on the microalgae in the PBRs.This research work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2014-54980-C2-1-R, CTM2014-54980-C2-2-R, CTM2011-28595-C02-01, and CTM2011-28595-C02-02) jointly with the European Regional Development Fund (ERDF), both of which are gratefully acknowledged. It was also supported by the Spanish Ministry of Education, Culture and Sport via a pre-doctoral FPU fellowship to author J. González-Camejo (FPU14/05082).Gonzalez-Camejo, J.; Viruela Navarro, A.; Ruano García, MV.; Barat, R.; Seco Torrecillas, A.; Ferrer, J. (2019). Effect of light intensity, light duration and photoperiods in the performance of an outdoor photobioreactor for urban wastewater treatment. Algal Research. 40:1-11. https://doi.org/10.1016/j.algal.2019.101511S1114

    Advances in nanocatalysts design for biofuels production

    Get PDF
    The exploitation of nanocatalysts, at the boundary between homogeneous and heterogeneous catalysis, is tracking new efficient ways to produce renewable biofuels in environmentally friendly conditions. Their solid state makes them recyclable, and their nanomateric particle size enables high activities approaching those offered by homogeneous catalysts, as well as novel and unique catalytic behaviors not accessible to solids above the nanometer range. Furthermore, the use of magnetically active materials has led to the development of nanocatalysts easily recoverable through the application of magnetic fields. In this mini-review, latest achievements in the production of advanced biofuels using stable, highly active, cheap and reusable nanocatalysts are described. Specifically, biodiesel and high density fuels have been chosen as major topics of research for the design of catalytic nanomaterials

    Bioreactor for microalgal cultivation systems: strategy and development

    Get PDF
    Microalgae are important natural resources that can provide food, medicine, energy and various bioproducts for nutraceutical, cosmeceutical and aquaculture industries. Their production rates are superior compared to those of terrestrial crops. However, microalgae biomass production on a large scale is still a challenging problem in terms of economic and ecological viability. Microalgal cultivation system should be designed to maximize production with the least cost. Energy efficient approaches of using light, dynamic mixing to maximize use of carbon dioxide (CO2) and nutrients and selection of highly productive species are the main considerations in designing an efficient photobioreactor. In general, optimized culture conditions and biological responses are the two overarching attributes to be considered for photobioreactor design strategies. Thus, fundamental aspects of microalgae growth, such as availability of suitable light, CO2 and nutrients to each growing cell, suitable environmental parameters (including temperature and pH) and efficient removal of oxygen which otherwise would negatively impact the algal growth, should be integrated into the photobioreactor design and function. Innovations should be strategized to fully exploit the wastewaters, flue-gas, waves or solar energy to drive large outdoor microalgae cultivation systems. Cultured species should be carefully selected to match the most suitable growth parameters in different reactor systems. Factors that would decrease production such as photoinhibition, self-shading and phosphate flocculation should be nullified using appropriate technical approaches such as flashing light innovation, selective light spectrum, light-CO2 synergy and mixing dynamics. Use of predictive mathematical modelling and adoption of new technologies in novel photobioreactor design will not only increase the photosynthetic and growth rates but will also enhance the quality of microalgae composition. Optimizing the use of natural resources and industrial wastes that would otherwise harm the environment should be given emphasis in strategizing the photobioreactor mass production. To date, more research and innovation are needed since scalability and economics of microalgae cultivation using photobioreactors remain the challenges to be overcome for large-scale microalgae production

    Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass

    No full text
    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass
    corecore