31 research outputs found

    Changes in lichen diversity and community structure with fur seal population increase on Signy Island, South Orkney Islands

    Get PDF
    Signy Island has experienced a dramatic increase in fur seal numbers over recent decades, which has led to the devastation of lowland terrestrial vegetation, with the eradication of moss turfs and carpets being the most prominent feature. Here we demonstrate that fur seals also affect the other major component of this region’s typical cryptogamic vegetation, the lichens, although with a lower decrease in variability and abundance than for bryophytes. Classification (UPGMA) and ordination (Principal Coordinate Analysis) of vegetation data highlight differences in composition and abundance of lichen communities between areas invaded by fur seals and contiguous areas protected from these animals. Multivariate analysis relating lichen communities to environmental parameters, including animal abundance and soil chemistry (Canonical Correspondence Analysis), suggests that fur seal trampling results in the destruction of muscicolous-terricolous lichens, including several cosmopolitan and bipolar fruticose species. In addition, animal excretion favours an increase in nitrophilous crustose species, a group which typically characterizes areas influenced by seabirds and includes several Antarctic endemics. The potential effect of such animal-driven changes in vegetation on the fragile terrestrial ecosystem (e.g. through modification of the ground surface temperature) confirms the importance of indirect environmental processes in Antarctica

    Ecology of moss banks on Signy Island (maritime Antarctic)

    Get PDF
    Mosses are dominant components of high-latitude environments, and Signy Island (maritime Antarctic) provides a representative example of polar cryptogam-dominated terrestrial ecosystems. In 2011, we mapped all moss banks, their characteristics (thickness, area, floristic composition) and investigated their relationship with selected environmental factors including topography (elevation, slope, aspect), biotic disturbance (fur seals), deglaciation age of the surfaces, location on the eastern vs. western side of the island and snow cover as a proxy of water supply during the summer (December). We here identify the most important environmental factors influencing moss bank characteristics and distribution and provide a baseline for future monitoring. Moss bank abundance and distribution are the result of the interaction of multiple abiotic and biotic factors acting at different spatial scales. The most important factors are the location of moss banks on the eastern vs. western side of the island at the macroscale (with thicker and larger moss banks and a prevalence of Chorisodontium aciphyllum on the western side) and their favourable aspect (mainly N, NW) at the microscale, providing better microclimatic conditions suitable for their development. The elevation threshold detected at 120 m could indicate the occurrence of a ‘moss bank line’, analogous to the tree line, and corresponds with a threshold of mean annual temperature of −4.8 °C. The other factors examined play a subsidiary role in affecting bank distribution and characteristics. These findings allow a better understanding of this key feature of maritime Antarctic vegetation and provide quantitative information about their ecology

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-kmÂČ resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-kmÂČ pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Permafrost and snow monitoring at Rothera Point (Adelaide Island, Maritime Antarctica): implications for rock weathering in cryotic conditions.

    Get PDF
    In February 2009 a new permafrost borehole was installed close to the British Antarctic Survey Station at Rothera Point, Adelaide Island (67.57195°S 68.12068°W). The borehole is situated at 31 m asl on a granodiorite knob with scattered lichen cover. The spatial variability of snow cover and of ground surface temperature (GST) is characterised through the monitoring of snow depth on 5 stakes positioned around the borehole and with thermistors placed at three different rock surfaces (A, B and C). The borehole temperature is measured by 18 thermistors placed at different depths between 0.3 and 30 m. Snow persistence is very variable both spatially and temporally with snow free days per year ranging from 13 and more than 300, and maximum snow depth varying between 0.03 and 1.42 m. This variability is the main cause of high variability in GST, that ranged between -3.7 and -1.5 °C. The net effect of the snow cover is a cooling of the surface. Mean annual GST, mean summer GST, and the degree days of thawing and the n-factor of thawing were always much lower at sensor A where snow persistence and depth were greater than in the other sensor locations. At sensor A the potential freeze-thaw events were negligible (0-3) and the thermal stress was at least 40% less than in the other sensor locations. The zero curtain effect at the rock surface occurred only at surface A, favouring chemical weathering over mechanical action. The active layer thickness (ALT) ranged between 0.76 and 1.40 m. ALT was directly proportional to the mean air temperature in summer, and inversely proportional to the maximum snow depth in autumn. ALT temporal variability was greater than reported at other sites at similar latitude in the Northern Hemisphere, or with the similar mean annual air temperature in Maritime Antarctica, because vegetation and a soil organic horizon are absent at the study site. Zero annual amplitude in temperature was observed at about 16 m depth, where the mean annual temperature is -3 °C. Permafrost thickness was calculated to range between 112 and 157 m, depending on the heat flow values adopted. The presence of sub-sea permafrost cannot be excluded considering the depth of the shelf around Rothera Point and its glacial history

    CO2 fluxes among different vegetation types during the growing season in Marguerite Bay (Antarctic Peninsula)

    No full text
    The Antarctic Peninsula has experienced a strong climate warming trend of + 0.53 °C (mean annual air temperature) over the last 50 years. In the Polar Regions, changes in vegetation and permafrost due to a warming climate are expected to produce strong feedbacks to climate and, despite their relatively small areal extent, ice-free areas in Antarctica provide unique natural environments for studying these effects. Off the Antarctic Peninsula, close to Rothera Research Station on Adelaide Island, we used in situ measurements to assess whether spatial variation of CO2 fluxes exists a) among three important and typical vegetation types at Rothera Point during the daylight period; b) across four different ecosystem types (from Antarctic vascular tundra to barren soil) on neighbouring Anchorage Island during the peak of the growing season (January–February 2009). We aimed to assess whether Net Ecosystem Exchange (NEE), Ecosystem Respiration (ER) and Gross Ecosystem Photosynthesis (GEP) change among the selected ecosystem types and determine which environmental factors (soil moisture, soil temperature and PAR) influence NEE and ER. The data obtained at Rothera Point confirmed the presence of spatial variation of CO2 fluxes related to vegetation type, and temporal variation of the CO2 cycle during the daylight period for moss and barren soil ecosystems. At Anchorage Island the spatial variation of CO2 fluxes was mainly influenced by vegetation type at inter-community level. Deschampsia and Sanionia showed higher NEE and ER values (− 0.03 / 0.43 ÎŒmol CO2 m− 2 s− 1 for Deschampsia NEE; 0 / 0.62 ÎŒmol CO2 m− 2 s− 1Sanionia NEE; 0.27 / 2.03 ÎŒmol CO2 m− 2 s− 1Deschampsia ER; 0.31 / 1.7 ÎŒmol CO2 m− 2 s− 1Sanionia ER) than the other vegetation types studied. We measured generally positive NEE values probably due to high soil respiration. Our data suggest that ecosystems such as those studied may act as a source for CO2 release to the atmosphere and that this source effect is likely to continue and/or to increase until the “legacy” of organic matter and nutrients stored in the soils is largely decomposed

    Soil microbial structure and enzymatic activity along a plant cover in Victoria Land (continental Antarctica).

    No full text
    In continental Antarctica, autotrophs are exclusively represented by cyanobacteria, algae, lichens and mosses. Consequently, Antarctic soil communities are expected to be rather simple and primarily dominated by microorganisms. Recently, a change in abundance of mosses and lichens has been observed in continental Antarctica in response to an increase of the active permafrost layer, but the implication of this change to soil micro-organisms remains little known. Here we aim to clarify to what extent the abundance of mosses and lichens affects soil biogeochemistry in Victoria Land, with a particular focus on soil microbial abundance and associated soil enzymatic activity. To achieve this aim, we assessed the structure of soil microbiome and the activity of hydrolytic C, N, and P enzymes along a gradient in soil physico-chemical conditions and plant cover. Moss cover strongly relates to the amount of soil organic carbon (SOC), soil water and nutrient content. Soils with higher content of organic carbon were characterized by higher microbial biomass and showed a relatively higher abundance of fungi as compared to bacteria. More specifically, PLFAs biomarkers for Actinomycetes and Gram-positive bacteria were mainly associated to soils with lower SOC. In order to sustain a higher microbial biomass, total activity of hydrolytic enzymes increased with increasing SOC content. Eco-enzymatic stoichiometry, based on C to P and C to N ratios, indicates a higher investment in N- and P-hydrolytic enzymes (ratio < 1), particularly at low SOC content. Oppositely, an increase in C-hydrolytic enzyme activity (ratio 481) was observed with increasing accumulation of organic carbon. Such a result seems to indicate a stronger role of soil pH at low SOC on enzymatic stoichiometry (abiotic control) whereas with increasing accumulation of organic matter the enzymatic stoichiometry is more affected by microbial metabolism (biotic control)

    A possible unique ecosystem in the endoglacial hypersaline brines in Antarctica

    Get PDF
    Here, we present the results related to a new unique terrestrial ecosystem found in an englacial hypersaline brine found in Northern Victoria Land (Antarctica). Both the geochemistry and microbial (prokaryotic and fungal) diversity revealed an unicity with respect to all the other known Antarctic brines and suggested a probable ancient origin mainly due a progressive cryoconcentration of seawater. The prokaryotic community presented some peculiarities, such as the occurrence of sequences of Patescibacteria (which can thrive in nutrient-limited water environments) or few Spirochaeta, and the presence of archaeal sequences of Methanomicrobia closely related to Methanoculleus, a methanogen commonly detected in marine and estuarine environments. The high percentage (35%) of unassigned fungal taxa suggested the presence of a high degree of undiscovered diversity within a structured fungal community (including both yeast and filamentous life forms) and reinforce the hypothesis of a high degree of biological uniqueness of the habitat under study
    corecore