30 research outputs found

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s=7 TeV

    Get PDF
    This is the pre-print version of the Published Article which can be accessed from the link below.Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at √s=7  TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dNch/dη||η|<0.5=5.78±0.01(stat)±0.23(syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from √s=0.9 to 7 TeV is [66.1±1.0(stat)±4.2(syst)]%. The mean transverse momentum is measured to be 0.545±0.005(stat)±0.015(syst)  GeV/c. The results are compared with similar measurements at lower energies

    Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016

    Get PDF

    Manual pråtico de construção e montagem: mesa.

    No full text
    bitstream/CNPF-2010/46789/1/Cartilha-mesa-2010.pdfCartilha

    Manual pråtico de construção e montagem: cadeira.

    No full text
    bitstream/CNPF-2010/46794/1/Cartilha-cadeira-2010.pdfCartilha

    Manual pråtico de construção e montagem: baú.

    No full text
    bitstream/CNPF-2010/46792/1/Cartilha-bau-2010.pdfCartilha

    Identified hidden genomic changes in mantle cell lymphoma using high-resolution single nucleotide polymorphism genomic array

    No full text
    OBJECTIVE: Mantle cell lymphoma (MCL) is a lymphoma characterized by aberrant activation of CCND1/cyclin D1 followed by sequential genetic abnormalities. Genomic abnormalities in MCL have been extensively examined by classical cytogenetics and microarray-based comparative genomic hybridization techniques, pointing out a number of alterations in genomic regions that correlate with the neoplastic phenotype and survival. Recently, single nucleotide polymorphism genomic microarrays (SNP-chip) have been developed and used for analysis of cancer genomics. This technique allows detection of genomic changes with higher resolution, including loss of heterozygosity without changes of gene dosage, so-called acquired uniparental disomy (aUPD). MATERIALS AND METHODS: We have examined 33 samples of MCL (28 primary MCL and 5 cell lines) using the 250,000 SNP-chip from Affymetrix. RESULTS: Known alterations were confirmed by SNP arrays, including deletion of INK4A/ARF, duplication/amplification of MYC, deletion of ATM, and deletion of TP53. We also identified a duplication/amplification that occurred at 13q involving oncogenic microRNA, miR17-92. We found other genomic abnormalities, including duplication/amplification of cyclin D1, del(1p), del(6q), dup(3q) and dup(18q). Our SNP-chip analysis detected these abnormalities at high resolution, allowing us to narrow the size of the commonly deleted regions, including 1p and 6q. Our SNP-chip analysis detected a number of aUPD sites, including whole chromosome 9 aUPD and 9p aUPD. We also found an MCL case with 19p, leading to homozygous deletion of TNFSF genes. CONCLUSION: SNP-chip analysis detected in MCL very small genomic gains/losses, as well as aUPDs, which could not be detected by more conventional methods
    corecore