29 research outputs found

    Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710

    Get PDF
    Bulges of edge-on galaxies are often boxy/peanut-shaped (B/PS), and unsharp masks reveal the presence of an X shape. Simulations show that these shapes can be produced by dynamical processes driven by a bar which vertically thickens the centre. In the Milky Way, which contains such a B/PS bulge, the X-shaped structure is traced by the metal-rich stars but not by the metal-poor ones. Recently, Debattista et al. interpreted this property as a result of the varying effect of the bar on stellar populations with different starting kinematics. This kinematic fractionation model predicts that cooler populations at the time of bar formation go on to trace the X shape, whereas hotter populations are more uniformly distributed. As this prediction is not specific to the Milky Way, we test it with Multi Unit Spectroscopic Explorer (MUSE) observations of the B/PS bulge in the nearby galaxy NGC 4710. We show that the metallicity map is more peanut-shaped than the density distribution itself, in good agreement with the prediction. This result indicates that the X-shaped structure in B/PS bulges is formed of relatively metal-rich stars that have been vertically redistributed by the bar, whereas the metal-poor stars have more uniform, box-shaped distribution

    Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated measurement uncertainty

    Get PDF
    We present the latest release of the global mean sea level (GMSL) record produced by the French space agency Centre National d’Etudes Spatiales (CNES) and distributed on the AVISO+ website. This dataset is based on reprocessed along-track data, so-called L2P 21, of the reference missions TOPEX/Poseidon (TP) and Jason-1, Jason-2 and Jason-3. The L2P 21 CNES/AVISO+ GMSL record covers the period January 1993 to December 2021 and is now delivered with an estimate of its measurement uncertainties following the method presented in Ablain et al. (2019). Based on the latest calibration (Cal) and validation (Val) knowledge, we updated the uncertainty budget of the reference altimetry mission measurements and demonstrate that the CNES/AVISO+ GMSL record now achieves stability of performances of ± 0.3 mm yr−1 at the 90 % confidence level (C.L.) for its trend and ±0.05 mm yr−2 (90 % C.L.) for its acceleration over the 29 years of the altimetry record. Thanks to an analysis of the relative contribution of each measurement uncertainty budget contributor, i.e. the altimeter, the radiometer, the orbit determination and the geophysical corrections, we identified the current limiting factors to the GMSL monitoring stability and accuracy. We find that the radiometer wet troposphere correction (WTC) and the high-frequency errors with timescales shorter than 1 year are the major contributors to the GMSL measurement uncertainty over periods of 10 years (30 %–70 %), for both the trend and acceleration estimations. For longer periods of 20 years, the TP data quality is still a limitation, but more interestingly, the International Terrestrial Reference Frame (ITRF) realization uncertainties becomes dominant over all the other sources of uncertainty. Such a finding challenges the altimetry observing system as it is designed today and highlights clear topics of research to be explored in the future to help the altimetry community to improve the GMSL measurement accuracy and stability.</p

    Chromodynamical analysis of lenticular galaxies using globular clusters and planetary nebulae

    Get PDF
    Recovering the origins of lenticular galaxies can shed light on the understanding of galaxy formation and evolution, since they present properties that can be found in both elliptical and spiral galaxies. In this work we study the kinematics of the globular cluster (GC) systems of three lenticular galaxies located in low density environments (NGC2768, NGC3115 and NGC7457), and compare them with the kinematics of planetary nebulae (PNe). The PNe and GC data come from the Planetary Nebulae Spectrograph and the SLUGGS Surveys. Through photometric spheroid-disc decomposition and PNe kinematics we find the probability for a given GC to belong to either the spheroid or the disc of its host galaxy or be rejected from the model. We find that there is no correlation between the components that the GCs are likely to belong to and their colours. Particularly, for NGC2768 we find that its red GCs display rotation preferentially at inner radii (Re < 1). In the case of the GC system of NGC3115 we find a group of GCs with similar kinematics that are not likely to belong to neither its spheroid nor disc. For NGC7457 we find that 70% of its GCs are likely to belong to the disc. Overall, our results suggest that these galaxies assembled into S0s through different evolutionary paths. Mergers seem to have been very important for NGC2768 and NGC3115 while NGC7457 is more likely to have experienced secular evolution

    Exploring the mass assembly of the early-type disc galaxy NGC 3115 with MUSE

    No full text
    We present MUSE integral field spectroscopic data of the S0 galaxy NGC 3115 obtained during the instrument commissioning at the ESO Very Large Telescope (VLT). We analyse the galaxy stellar kinematics and stellar populations and present two-dimensional maps of their associated quantities. We thus illustrate the capacity of MUSE to map extra-galactic sources to large radii in an efficient manner, i.e. ∌4 Rₑ, and provide relevant constraints on its mass assembly. We probe the well-known set of substructures of NGC 3115 (nuclear disc, stellar rings, outer kpc-scale stellar disc, and spheroid) and show their individual associated signatures in the MUSE stellar kinematics and stellar populations maps. In particular, we confirm that NGC 3115 has a thin fast-rotating stellar disc embedded in a fast-rotating spheroid, and that these two structures show clear differences in their stellar age and metallicity properties. We emphasise an observed correlation between the radial stellar velocity, V, and the Gauss-Hermite moment, h₃, which creates a butterfly shape in the central 15″ of the h₃ map. We further detect the previously reported weak spiral- and ring-like structures, and find evidence that these features can be associated with regions of younger mean stellar ages. We provide tentative evidence for the presence of a bar, although the V-h₃ correlation can be reproduced by a simple axisymmetric dynamical model. Finally, we present a reconstruction of the two-dimensional star formation history of NGC 3115 and find that most of its current stellar mass was formed at early epochs (>12 Gyr ago), while star formation continued in the outer (kpc-scale) stellar disc until recently. Since z ∌2 and within ∌4 Rₑ, we suggest that NGC 3115 has been mainly shaped by secular processes.16 page(s

    Understanding the environment around the intermediate mass black hole candidate ESO 243-49 HLX-1

    Full text link
    Aims. ESO 243-49 HLX-1, otherwise known as HLX-1, is an intermediate mass black hole (IMBH) candidate located 8â€Čâ€Č (3.7 Kpc) from the centre of the edge-on S0 galaxy ESO 243-49. How the black hole came to be associated with this galaxy, and the nature of the environment in which it resides, remain unclear. Using multi-wavelength observations we aim to investigate the nature of the medium surrounding HLX-1, search for evidence of past mergers with ESO 243-49 and constrain parameters of the galaxy, including the mass of the expected central supermassive black hole, essential for future modelling of the interaction of the IMBH and ESO 243-49. Methods. We have reduced and analysed integral field unit observations of ESO 243-49 that were taken with the MUSE instrument on the VLT. Using complementary multi-wavelength data, including X-shooter, HST, Swift, Chandra and ATCA data, we have further examined the vicinity of HLX-1. We additionally examined the nature of the host galaxy and estimate the mass of the central supermassive black hole in ESO 243-49 using (black hole mass)–(host spheroid) scaling relations and the fundamental plane of black hole activity. Results. No evidence for a recent minor-merger that could result in the presence of the IMBH is discerned, but the data are compatible with a scenario in which minor mergers may have occurred in the history of ESO 243-49. The MUSE data reveal a rapidly rotating disc in the centre of the galaxy, around the supermassive black hole. The mass of the supermassive black hole at the centre of ESO 243-49 is estimated to be 0.5−23 × 107M⊙. Studying the spectra of HLX-1, that were taken in the low and hard state, we determine Hα flux variability to be at least a factor 6, compared to observations taken during the high and soft state. This Hα flux variability over one year indicates that the line originates close to the intermediate mass black hole, excluding the possibility that the line emanates from a surrounding nebula or a star cluster. The large variability associated with the X-ray states of HLX-1 confirms that the Hα line is associated with the object and therefore validates the distance to HLX-1

    Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation

    No full text
    Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z≃1z \simeq 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than 1010 M⊙^{10} \rm \, M_{\odot} that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, fSRf_{\rm SR}, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of fSRf_{\rm SR}, a weak trend is seen in the mean value of spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of central ETGs of halos with Mvir>1012.5M⊙M_{vir} > 10^{12.5}\rm M_{\odot}, but only 22% of satellite and field ETGs. We find that non-merger induced tidal perturbations better correlate with the galaxy spin-down in satellite ETGs than mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z<1z < 1) universe.Comment: Accepted for publication in Ap

    Deep MUSE observations in the HDFS. Morpho-kinematics of distant star-forming galaxies down to 108M⊙

    Get PDF
    Aims. Whereas the evolution of gas kinematics of massive galaxies is now relatively well established up to redshift z ~ 3, little is known about the kinematics of lower mass (M⋆≀ 1010M⊙) galaxies. We use MUSE, a powerful wide-field, optical integral-field spectrograph (IFS) recently mounted on the VLT, to characterize this galaxy population at intermediate redshift. Methods. We made use of the deepest MUSE observations performed so far on the Hubble Deep Field South (HDFS). This data cube, resulting from 27 h of integration time, covers a one arcmin2 field of view at an unprecedented depth (with a 1σ emission-line surface brightness limit of 1 × 10-19 erg s-1 cm-2 arcsec-2) and a final spatial resolution of ≈0.7â€Čâ€Č. We identified a sample of 28 resolved emission-line galaxies, extending over an area that is at least twice the seeing disk, spread over a redshift interval of 0.
    corecore