49 research outputs found

    The impact of ship emission controls recorded by cloud properties

    Get PDF
    The impact of aerosols on cloud properties is one of the leading uncertainties in the human forcing of the climate. Ships are large, isolated sources of aerosol creating linear cloud formations known as shiptracks. These are an ideal opportunity to identify and measure aerosol-cloud interactions. This work uses over 17,000 shiptracks during the implementation of fuel sulphur content regulations to demonstrate the central role of sulphate aerosol in ship exhaust for modifying clouds. By connecting individual shiptracks to transponder data, it is shown that almost half of shiptracks are likely undetected, masking a significant contribution to the climate impact of shipping. A pathway to retrieving ship sulphate emissions is demonstrated, showing how cloud observations could be used to monitor air pollution

    CT colonography with minimal bowel preparation: evaluation of tagging quality, patient acceptance and diagnostic accuracy in two iodine-based preparation schemes

    Get PDF
    PURPOSE: The aim of this study was to compare a 1-day with a 2-day iodine bowel preparation for CT colonography in a positive faecal occult blood test (FOBT) screening population. MATERIALS AND METHODS: One hundred consecutive patients underwent CT colonography and colonoscopy with segmental unblinding. The first 50 patients (group 1) ingested 7 50 ml iodinated contrast starting 2 days before CT colonography. The latter 50 patients (group 2) ingested 4 50 ml iodinated contrast starting 1 day before CT colonography. Per colonic segment measurements of residual stool attenuation and homogeneity were performed, and a subjective evaluation of tagging quality (grade 1-5) was done. Independently, two reviewers performed polyp and carcinoma detection. RESULTS: The tagging density was 638 and 618 HU (p = 0.458) and homogeneity 91 and 86 HU for groups 1 and 2, respectively (p = 0.145). The tagging quality was graded 5 (excellent) in 90% of all segments in group 1 and 91% in group 2 (p = 0.749). Mean per-polyp sensitivity for lesions >or=10 mm was 86% in group 1 and 97% in group 2 (p = 0.355). Patient burden from diarrhoea significantly decreased for patients in group 2. CONCLUSIONS: One-day preparation with meglumine ioxithalamate results in an improved patient acceptability compared with 2-day preparation and has a comparable, excellent image quality and good diagnostic performanc

    Bounding global aerosol radiative forcing of climate change

    Get PDF
    Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6 W m−2, or -2.0 to -0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds

    Primary uncleansed 2D versus primary electronically cleansed 3D in limited bowel preparation CT-colonography. Is there a difference for novices and experienced readers?

    Get PDF
    The purpose of this study was to compare a primary uncleansed 2D and a primary electronically cleansed 3D reading strategy in CTC in limited prepped patients. Seventy-two patients received a low-fibre diet with oral iodine before CT-colonography. Six novices and two experienced observers reviewed both cleansed and uncleansed examinations in randomized order. Mean per-polyp sensitivity was compared between the methods by using generalized estimating equations. Mean per-patient sensitivity, and specificity were compared using the McNemar test. Results were stratified for experience (experienced observers versus novice observers). Mean per-polyp sensitivity for polyps 6 mm or larger was significantly higher for novices using cleansed 3D (65%; 95%CI 57–73%) compared with uncleansed 2D (51%; 95%CI 44–59%). For experienced observers there was no significant difference. Mean per-patient sensitivity for polyps 6 mm or larger was significantly higher for novices as well: respectively 75% (95%CI 70–80%) versus 64% (95%CI 59–70%). For experienced observers there was no statistically significant difference. Specificity for both novices and experienced observers was not significantly different. For novices primary electronically cleansed 3D is better for polyp detection than primary uncleansed 2D

    Strong constraints on aerosol-cloud interactions from volcanic eruptions.

    Get PDF
    Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response

    Detection of infectious agents in equine pregnancy loss, stillbirth and neonatal death

    No full text
    International audienceEquine abortion, stillbirth and neonatal death cause major economic losses to the equine industry worldwide. Both non-infectious and a wide range of infectious causes have been described. However, the relative contribution of pathogens to equine abortion, stillbirth and neonatal death is poorly documented, since available studies involve only a limited number of pathogens. Therefore, the objectives of the present retrospective monitoring study were to determine the prevalence of infectious agents associated with equine abortion and perinatal mortality in Belgium, and to set up a protocol usable under field conditions using polymerase chain reaction targeting. A real-time simple polymerase chain reaction for eight different abortifacient pathogens was conducted leading to the detection of at least one infectious agent in 37% of 105 analyzed cases. In the diagnosed cases, equine herpesvirus-1 was the most detected pathogen (49%), followed by Streptococcus equi subspecies zooepidemicus (28%), Coxiella burnetii (18%), Leptospira interrogans (3%) and Neospora caninum (3%). None of the analyzed cases was positive for equine viral arteritis, equine herpesvirus-4 and Chlamydophila spp. In this study, PCR targeting is shown to have its value to detect a (co)-infectious cause in equine abortion, stillbirth and neonatal death, especially in field conditions where autolysis and contamination might preclude a full post-mortem examination protocol based on classical microbiological examination

    Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation

    Get PDF
    International audienceThe number concentration of cloud particles is a key quantity for understanding aerosol–cloud interactions and describing clouds in climate and numerical weather prediction models. In contrast with recent advances for liquid clouds, few observational constraints exist regarding the ice crystal number concentration (Ni). This study investigates how combined lidar–radar measurements can be used to provide satellite estimates of Ni, using a methodology that constrains moments of a parameterized particle size distribution (PSD). The operational liDAR–raDAR (DARDAR) product serves as an existing base for this method, which focuses on ice clouds with temperatures Tc < −30°C.Theoretical considerations demonstrate the capability for accurate retrievals of Ni, apart from a possible bias in the concentration in small crystals when Tc≳ − 50°C, due to the assumption of a monomodal PSD shape in the current method. This is verified via a comparison of satellite estimates to coincident in situ measurements, which additionally demonstrates the sufficient sensitivity of lidar–radar observations to Ni. Following these results, satellite estimates of Ni are evaluated in the context of a case study and a preliminary climatological analysis based on 10 years of global data. Despite a lack of other large-scale references, this evaluation shows a reasonable physical consistency in Ni spatial distribution patterns. Notably, increases in Ni are found towards cold temperatures and, more significantly, in the presence of strong updrafts, such as those related to convective or orographic uplifts. Further evaluation and improvement of this method are necessary, although these results already constitute a first encouraging step towards large-scale observational constraints for Ni. Part 2 of this series uses this new dataset to examine the controls on Ni
    corecore