36 research outputs found

    Evaluation of Riparian Tree Cover and Shading in the Chauga River Watershed Using LiDAR and Deep Learning Land Cover Classification

    Get PDF
    River systems face negative impacts from development and removal of riparian vegetation that provide critical shading in the face of climate change. This study used supervised deep learning to accurately classify the land cover, including shading, of the Chauga River watershed, located in Oconee County, South Carolina, for 2011 and 2019. The study examined the land cover differences along the Chauga River and its tributaries, inside and outside the Sumter National Forest. LiDAR data were incorporated in solar radiation calculations for the Chauga River inside and outside the National Forest. The deep learning classifications produced land cover maps with high overall accuracy (97.09% for 2011; 97.58% for 2019). The most significant difference in land cover was in tree cover in the 50 m buffer of the tributaries inside the National Forest compared to the tributaries outside the National Forest (2011: 95.39% vs. 81.84%, 2019: 92.86% vs. 82.06%). The solar radiation calculations also confirmed a difference between the area inside and outside the National Forest, with the mean temperature being greater outside the protected area (outside: 455.845 WH/m2; inside: 416,770 WH/m2). This study suggests that anthropogenic influence in the Chauga River watershed is greater in the areas outside the Sumter National Forest, which could cause damage to the river ecosystem if left unchecked in the future as development pressures increase. This study demonstrates the accurate application of deep learning for high-resolution classification of river shading combined with the use of LiDAR data to estimate solar radiation reaching the Chauga River. Techniques to monitor riparian zones and shading at high spatial resolutions are critical for the mitigation of the negative impacts of warming climates on aquatic ecosystems

    Can Interventional Cardiologists Help Deliver the UK Mechanical Thrombectomy Interventional Programme for Patients with Acute Ischaemic Stroke? A Discussion Paper from the British Cardiovascular Interventional Society Stroke Thrombectomy Focus Group

    Get PDF
    There is a willingness among UK interventional cardiologists to contribute to provision of a 24/7 mechanical thrombectomy (MT) service for all suitable stroke patients if given the appropriate training. This highly effective intervention remains unavailable to the majority of patients who might benefit, partly because there is a limited number of trained specialists. As demonstrated in other countries, interdisciplinary working can be the solution and an opportunity to achieve this is outlined in this article

    Diabetic retinopathy: current and future methods for early screening from a retinal hemodynamic and geometric approach

    Get PDF
    Diabetic retinopathy (DR) is a major disease and is the number one cause of blindness in the UK. In England alone, 4200 new cases appear every year and 1280 lead to blindness. DR is a result of diabetes mellitus, which affects the retina of the eye and specifically the vessel structure. Elevated levels of glucose cause a malfunction in the cell structure, which affects the vessel wall and, in severe conditions, leads to their breakage. Much research has been carried out on detecting the different stages of DR but not enough versatile research has been carried out on the detection of early DR before the appearance of any lesions. In this review, the authors approach the topic from the functional side of the human eye and how hemodynamic factors that are impaired by diabetes affect the vascular structur

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Evaluation of Riparian Tree Cover and Shading in the Chauga River Watershed Using LiDAR and Deep Learning Land Cover Classification

    No full text
    River systems face negative impacts from development and removal of riparian vegetation that provide critical shading in the face of climate change. This study used supervised deep learning to accurately classify the land cover, including shading, of the Chauga River watershed, located in Oconee County, South Carolina, for 2011 and 2019. The study examined the land cover differences along the Chauga River and its tributaries, inside and outside the Sumter National Forest. LiDAR data were incorporated in solar radiation calculations for the Chauga River inside and outside the National Forest. The deep learning classifications produced land cover maps with high overall accuracy (97.09% for 2011; 97.58% for 2019). The most significant difference in land cover was in tree cover in the 50 m buffer of the tributaries inside the National Forest compared to the tributaries outside the National Forest (2011: 95.39% vs. 81.84%, 2019: 92.86% vs. 82.06%). The solar radiation calculations also confirmed a difference between the area inside and outside the National Forest, with the mean temperature being greater outside the protected area (outside: 455.845 WH/m2; inside: 416,770 WH/m2). This study suggests that anthropogenic influence in the Chauga River watershed is greater in the areas outside the Sumter National Forest, which could cause damage to the river ecosystem if left unchecked in the future as development pressures increase. This study demonstrates the accurate application of deep learning for high-resolution classification of river shading combined with the use of LiDAR data to estimate solar radiation reaching the Chauga River. Techniques to monitor riparian zones and shading at high spatial resolutions are critical for the mitigation of the negative impacts of warming climates on aquatic ecosystems

    Mortiamides A–D, Cyclic Heptapeptides from a Novel <i>Mortierella</i> sp. Obtained from Frobisher Bay

    No full text
    Four new cyclic heptapeptides, mortiamides A–D (<b>1</b>–<b>4</b>), were obtained from a novel <i>Mortierella</i> sp. isolate obtained from marine sediment collected from the intertidal zone of Frobisher Bay, Nunavut, Canada. The structures of the compounds were elucidated by NMR spectroscopy and tandem mass spectrometry. The absolute configurations of the amino acids were determined using Marfey’s method. Localization of l and d amino acids within each compound was ascertained by retention time comparison of the partial hydrosylate products of each compound to synthesized dipeptide standards using LC-HRMS. Compounds <b>1</b>–<b>4</b> did not exhibit any significant antimicrobial or cytotoxic activity
    corecore