380 research outputs found

    Molecular control of secondary palate development

    Get PDF
    AbstractCompared with the embryonic development of other organs, development of the secondary palate is seemingly simple. However, each step of palatogenesis, from initiation until completion, is subject to a tight molecular control that is governed by epithelial–mesenchymal interactions. The importance of a rigorous molecular regulation of palatogenesis is reflected when loss of function of a single protein generates cleft palate, a frequent malformation with a complex etiology. Genetic studies in humans and targeted mutations in mice have identified numerous factors that play key roles during palatogenesis. This review highlights the current understanding of the molecular and cellular mechanisms involved in normal and abnormal palate development with special respect to recent advances derived from studies of mouse models

    Pbx loss in cranial neural crest, unlike in epithelium, results in cleft palate only and a broader midface.

    Get PDF
    Orofacial clefting represents the most common craniofacial birth defect. Cleft lip with or without cleft palate (CL/P) is genetically distinct from cleft palate only (CPO). Numerous transcription factors (TFs) regulate normal development of the midface, comprising the premaxilla, maxilla and palatine bones, through control of basic cellular behaviors. Within the Pbx family of genes encoding Three Amino-acid Loop Extension (TALE) homeodomain-containing TFs, we previously established that in the mouse, Pbx1 plays a preeminent role in midfacial morphogenesis, and Pbx2 and Pbx3 execute collaborative functions in domains of coexpression. We also reported that Pbx1 loss from cephalic epithelial domains, on a Pbx2- or Pbx3-deficient background, results in CL/P via disruption of a regulatory network that controls apoptosis at the seam of frontonasal and maxillary process fusion. Conversely, Pbx1 loss in cranial neural crest cell (CNCC)-derived mesenchyme on a Pbx2-deficient background results in CPO, a phenotype not yet characterized. In this study, we provide in-depth analysis of PBX1 and PBX2 protein localization from early stages of midfacial morphogenesis throughout development of the secondary palate. We further establish CNCC-specific roles of PBX TFs and describe the developmental abnormalities resulting from their loss in the murine embryonic secondary palate. Additionally, we compare and contrast the phenotypes arising from PBX1 loss in CNCC with those caused by its loss in the epithelium and show that CNCC-specific Pbx1 deletion affects only later secondary palate morphogenesis. Moreover, CNCC mutants exhibit perturbed rostro-caudal organization and broadening of the midfacial complex. Proliferation defects are pronounced in CNCC mutants at gestational day (E)12.5, suggesting altered proliferation of mutant palatal progenitor cells, consistent with roles of PBX factors in maintaining progenitor cell state. Although the craniofacial skeletal abnormalities in CNCC mutants do not result from overt patterning defects, osteogenesis is delayed, underscoring a critical role of PBX factors in CNCC morphogenesis and differentiation. Overall, the characterization of tissue-specific Pbx loss-of-function mouse models with orofacial clefting establishes these strains as unique tools to further dissect the complexities of this congenital craniofacial malformation. This study closely links PBX TALE homeodomain proteins to the variation in maxillary shape and size that occurs in pathological settings and during evolution of midfacial morphology

    Lrp4 Modulates Extracellular Integration of Cell Signaling Pathways in Development

    Get PDF
    The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMP's and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway

    Integration of IRF6 and Jagged2 signalling is essential for controlling palatal adhesion and fusion competence

    Get PDF
    In mammals, adhesion and fusion of the palatal shelves are essential mechanisms during the development of the secondary palate; failure of these processes leads to the congenital anomaly, cleft palate. The mechanisms that prevent pathological adhesion between the oral and palatal epithelia while permitting adhesion and subsequent fusion of the palatal shelves via their medial edge epithelia remain obscure. In humans, mutations in the transcription factor interferon regulatory factor 6 (IRF6) underlie Van der Woude syndrome and popliteal pterygium syndrome. Recently, we have demonstrated that mice homozygous for a mutation in Irf6 exhibit abnormalities of epithelial differentiation that results in cleft palate as a consequence of adhesion between the palatal shelves and the tongue. In the current paper, we demonstrate that Irf6 is essential for oral epithelial differentiation and that IRF6 and the Notch ligand Jagged2 function in convergent molecular pathways during this process. We further demonstrate that IRF6 plays a key role in the formation and maintenance of the oral periderm, spatio-temporal regulation of which is essential for ensuring appropriate palatal adhesion

    Cell influx and contractile actomyosin force drive mammary bud growth and invagination

    Get PDF
    Attribution–Noncommercial–Share Alike–No Mirror Sites licenseThe mammary gland develops from the surface ectoderm during embryogenesis and proceeds through morphological phases defined as placode, hillock, bud, and bulb stages followed by branching morphogenesis. During this early morphogenesis, the mammary bud undergoes an invagination process where the thickened bud initially protrudes above the surface epithelium and then transforms to a bulb and sinks into the underlying mesenchyme. The signaling pathways regulating the early morphogenetic steps have been identified to some extent, but the underlying cellular mechanisms remain ill defined. Here, we use 3D and 4D confocal microscopy to show that the early growth of the mammary rudiment is accomplished by migration-driven cell influx, with minor contributions of cell hypertrophy and proliferation. We delineate a hitherto undescribed invagination mechanism driven by thin, elongated keratinocytes-ring cells-that form a contractile rim around the mammary bud and likely exert force via the actomyosin network. Furthermore, we show that conditional deletion of nonmuscle myosin IIA (NMIIA) impairs invagination, resulting in abnormal mammary bud shape.Peer reviewe

    Hedgehog signaling maintains hair follicle stem cell phenotype in young and aged human skin

    Full text link
    Skin hair follicles (HF) contain bulge stem cells (SC) that regenerate HFs during hair cycles, and repair skin epithelia following injury. As natural aging is associated with decreased skin repair capacity in humans, we have investigated the impact of age on human scalp HF bulge cell number and function. Here, we isolated human bulge cells, characterized as CD200 + /KRT15 + /KRT19 + cells of the HF, by dissection-combined CD200 selection in young and aged human skin. Targeted transcriptional profiling indicates that KRT15, KRT19, Dkk3, Dkk4, Tcf3, S100A4, Gas1, EGFR and CTGF/CCN2 are also preferentially expressed by human bulge cells, compared to differentiated HF keratinocytes (KC). Our results demonstrate that aging does not alter expression or localization of these HF SC markers. In addition, we could not detect significant differences in HF density or bulge cell number between young and aged human scalp skin. Interestingly, hedgehog (Hh) signaling is activated in human bulge cells in vivo , and down-regulated in differentiated HF KCs, both in young and aged skin. In addition, activation of Hh signaling by lentivirus-mediated overexpression of transcription factor Gli1 induces transcription of HF SC markers KRT15, KRT19, and Gas1, in cultured KCs. Together with previously reported knock-out mouse results, these data suggest a role for Hh signaling in maintaining bulge cell phenotype in young and aged human skin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78718/1/j.1474-9726.2009.00526.x.pd

    Lrp4 Modulates Extracellular Integration of Cell Signaling Pathways in Development

    Get PDF
    The extent to which cell signaling is integrated outside the cell is not currently appreciated. We show that a member of the low-density receptor-related protein family, Lrp4 modulates and integrates Bmp and canonical Wnt signalling during tooth morphogenesis by binding the secreted Bmp antagonist protein Wise. Mouse mutants of Lrp4 and Wise exhibit identical tooth phenotypes that include supernumerary incisors and molars, and fused molars. We propose that the Lrp4/Wise interaction acts as an extracellular integrator of epithelial-mesenchymal cell signaling. Wise, secreted from mesenchyme cells binds to BMP's and also to Lrp4 that is expressed on epithelial cells. This binding then results in the modulation of Wnt activity in the epithelial cells. Thus in this context Wise acts as an extracellular signaling molecule linking two signaling pathways. We further show that a downstream mediator of this integration is the Shh signaling pathway

    Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth

    Get PDF
    Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation. Unlike human teeth, mouse incisors grow throughout life, based on stem and progenitor cell activity. Here the authors generate single cell RNA-seq comparative maps of continuously-growing mouse incisor, non-growing mouse molar and human teeth, combined with lineage tracing to reveal dental cell complexity.Peer reviewe
    corecore