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Abstract

Compared with the embryonic development of other organs, development of the secondary palate is seemingly simple. However, each step of
palatogenesis, from initiation until completion, is subject to a tight molecular control that is governed by epithelial-mesenchymal interactions. The
importance of a rigorous molecular regulation of palatogenesis is reflected when loss of function of a single protein generates cleft palate, a
frequent malformation with a complex etiology. Genetic studies in humans and targeted mutations in mice have identified numerous factors that
play key roles during palatogenesis. This review highlights the current understanding of the molecular and cellular mechanisms involved in
normal and abnormal palate development with special respect to recent advances derived from studies of mouse models.
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Introduction

A major leap forward has been achieved from the super-
stition-ridden times when congenital malformations such as
cleft lip (“hare lip”) and cleft palate were regarded as the work
of supernatural malefic forces. Attempts to compensate for
those defects go back in time. It has thus been suggested that the
Greek orator Demosthenes (384-323 B.C.) used pebbles as
obturators to compensate for his cleft lip/palate in order to
improve his speech (Bien, 1967). The last few decades have
witnessed major improvements in the treatment of cleft palate.
Yet, in addition to the need for a multidisciplinary lengthy
treatment which is a burden to the affected individual, there may
be long-term sequelae, including speech defects, velopharyn-
geal insufficiency or incompetence, palatal fistulae, and mid-
facial growth distortion. These aspects beg for further
therapeutic improvements and a better understanding of the
etiopathogenesis of cleft palate.

Cleft lip with or without cleft palate (CL/P) and cleft
palate only (CPO) occur in 1/500 to 1/1000 births worldwide,
with CL/P being more frequent than CPO (Marazita, 2002).
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These orofacial clefts have been sub-categorized into
syndromic and nonsyndromic forms. The majority of CL/P
and CPO are nonsyndromic with an estimated genetic
contribution of 20-50% (Marazita, 2002). More than 300
syndromic disorders have been described in which CL/P or
CPO is a feature. These can occur as part of a Mendelian
inheritance of alleles at a single genetic locus, whereas others
are due to recurrent chromosomal rearrangements and
teratogens (Marazita, 2002; Muenke, 2002). The emerging
consensus for the etiology of CL/P and CPO is that of
complexity, caused by both genetic and/or environmental
factors. (Schutte and Murray, 1999; Marazita, 2002; Jugessur
and Murray, 2005). Several genes implicated in Mendelian
syndromic forms of CL/P seem also to play a role in the
etiology of isolated (nonsyndromic) clefts. These include the
homeobox gene MSX/ (CL/P with hypodontia), the T-box
gene TBX22 (X-linked CP and ankyloglossia), and genes
encoding the interferon regulatory factor 6 (/RF6), nectin-1
(PVRLI; polio virus receptor related 1) and the fibroblast
growth factor receptor 1 (FGFRI) (Stanier and Moore, 2004;
Jugessur and Murray, 2005; Rice, 2005). For comprehensive
treatises of the pathogenesis, genetics, environmental risk
factors and clinical care of orofacial clefting, the reader is
referred to excellent recent reviews (Reisberg, 2000; Wilkie
and Morriss-Kay, 2001; Marazita, 2002; Cobourne, 2004;
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Murray and Schutte, 2004; Stanier and Moore, 2004; Jugessur
and Murray, 2005; Rice, 2005).

While the different steps of embryonic development of the
mammalian secondary palate (see below) were already
established at the time the subject was reviewed by Peter
(1924), the detailed biological events regulating palate devel-
opment as well as the etiopathogenesis of CP are still not well
understood despite decades of intensive research. The last two
decades have witnessed an impressive sophistication in research
methodologies and a profusion of genetically modified mouse
models of diseases. Naturally, these have been implemented in
studies of palate development and led to new discoveries and to
the confirmation and/or refinement of earlier ones. This review
thus aims to bring into focus current insights into the molecular
and cellular mechanisms regulating secondary palate develop-
ment and the key advances that have emanated from mouse
studies.

Embryonic development

Development of the face and jaws is the product of growth
and fusion of prominences (processes) and involves cell mig-
ration, proliferation, differentiation and apoptosis. These
primordia consist of a mesenchymal core derived mainly
from the cranial neural crest and of an ectodermally derived
epithelial outer covering. Around embryonic day 10.5 in the
mouse embryo (E10.5; corresponding to early 6th week of
gestation in humans), the medial nasal processes which derive
from the frontonasal process merge with each other and with
the bilateral maxillary processes to form the upper lip and the
primary palate. Merging of the bilateral mandibular processes
across the midline produces the lower lip and the lower jaw.
Around E11 in the mouse (6th week of gestation in humans),
the earliest sign of secondary palate initiation is manifested as
bilateral outgrowths, primordia of the palatal shelves (PS),
which emerge from the inner part of the maxillary processes
and extend antero-posteriorly along the lateral walls of the
oropharynx (Fig. 1A). From E12.5-E14, the PS grow first
vertically in the oral cavity (Figs. 1B—I), then elevate into a
horizontal position (Figs. 1J-L) (E14.5-E15; gestation weeks
7-8 in humans) above the tongue. Further polarized growth
ensures approximation of the opposing PS and their adherence
along the medial edge epithelia (MEE), creating a transient
multilayered epithelium, the midline epithelial seam (MES)
(Figs. 2A—C). The progressive disappearance of the MES
(Figs. 2D—F) allows the fusion of the PS along the midline
(Figs. 2G, H). The PS also fuse with the primary palate
anteriorly and with the nasal septum dorsally. Upon completion
of palatogenesis, the early oronasal cavity becomes subdivided
into an oral and a nasal cavity, a prerequisite for simultaneous
breathing and feeding. Further differentiation of mesenchymal
cells produces the palatal processes of the maxillary and
palatine bones of the hard palate (Figs. 21, J). The posterior-
most extension of the secondary palate, the soft palate, is a
complex muscular organ.

Compared with other organs such as the brain, lung and
heart, palate development may seem simple. However, the

different steps of palatogenesis are tightly regulated, and failure
of PS growth, elevation, contact and fusion or failure of
mesenchymal differentiation generate a CP. In addition,
secondary palate development occurs in concert with the
development of other oral and craniofacial components,
implying that their impaired development can cause CP.

Mouse genetic mutations and cleft palate

Cleft of the secondary palate (CP) (Figs. 3A—D) has been
reported in a growing number of mice carrying mutations in
genes encoding transcription factors, growth and signaling
molecules and their receptors, extracellular matrix components
as well as intracellular effectors (Table 1). Several of these
mutations generate CP following intrinsic disruptions in the
cellular and molecular events controlling PS growth, elevation
or fusion, whereas others cause CP as a secondary event
following craniofacial bone and/or tongue anomalies.

Molecular control of palatal shelf growth

Targeted gene mutations in mice have revealed a number of
molecular determinants of PS growth (Table 1). In these, the PS
are hypoplastic and either remain in a vertical position, leading
to a wide cleft, or manage to elevate but remain apart.

Organogenesis is governed by interactions between adjacent
tissues layers. Organs as diverse as the lung, neural tube, tooth,
hair and palate share several signaling pathways, although the
developmental outcome is different. This emphasizes the notion
of ‘common notes—different melodies’, where similar mole-
cular networks are used during ontogeny of several organs but
regulate different processes. Thus, insights gained from the
biological events operating during embryogenesis of one organ
can be used to shed light into those acting in other organs.

Early experimental studies indicated a role for epithelial—
mesenchymal interactions in the regional specification of PS
epithelia and growth of the PS (Tyler and Koch, 1977; Tyler
and Pratt, 1980; Ferguson and Honig, 1984). More recent
studies identified several molecular networks operating
between the PS epithelium and mesenchyme during the
different steps of palatogenesis. These include signaling mole-
cules and growth factors such as Sonic hedgehog (Shh),
members of the transforming growth factor p (TgfP) super-
family, including bone morphogenetic proteins (Bmps) and
TgfPs, fibroblast growth factors (Fgfs), their receptors,
effectors and targets.

Transcription factors play fundamental roles in tissue
patterning, growth and differentiation. Msx/, the LIM-homeo-
box containing LAx8, the short stature homeobox Shox2 and the
odd-skipped related? (Osr2) genes have been shown to be
expressed in the growing PS. Targeted mutations of these genes
generate CP with minor or no craniofacial anomalies, indicating
an intrinsic requirement of these factors during palatogenesis
(Satokata and Maas, 1994; Zhao et al., 1999; Zhang et al., 2002;
Lan et al., 2004; Yu et al., 2005). The CP in mice lacking Msx/
(Msx1~"") has been shown to be caused by altered mesenchymal
proliferation (Zhang et al., 2002). Msx/ and Msx2 genes are
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Fig. 1. Whole-mount B-galactosidase staining of developing palates from ShhGFPCre/"; R26R/* (A, B) and K14-Cre/"; R26R/* (C) embryos at E11 (A), E13.5
(B, C). The developing mandible and tongue were removed (A—C). In panel A, the head was tilted slightly to show the nascent palatal shelf (arrow).
[-Galactosidase staining (dark blue) visualizes cells that express or have expressed Shh (A, B) or Keratin 14 (C) as well as their progeny. Histological sections
stained with the Alcian Blue-van Gieson method showing the developing palates of E13.5 (D—F), E14 (G-I) and E15-E15.5 (J-L) mouse embryos. Panels E, H,
and K are high magnification views of panels D, G and J, respectively. Panels F, I and L are high magnification views of the indicated areas in panels E, H and K,
respectively. The growing palatal shelves (PS) are vertical at E13.5 and E14. Between E15 and E15.5, the PS have assumed a horizontal position above the tongue.
Arrows in panel L indicate mitotic figures in nasal septum (NS) and PS mesenchymal cells. DL, dental lamina; IC, developing incisor tooth; L, lateral side of the
PS; M, medial side of the PS; MC, Meckel’s cartilage; MEE, medial edge epithelium; Mx, developing maxilla; PM, palatal mesenchyme; RP, rugae palatinae; T,
tongue; Tb, molar tooth bud; UL, upper lip. The blue color in the extracellular matrices of the PS and cartilage is due to Alcian blue staining of negatively charged

macromolecules such as glycosaminoglycans (D-L).

bona fide targets of Bmp signaling in different developing
embryonic sites including the tooth, cranial sutures, hair follicle
and neural tube, where they act to regulate morphogenesis and
differentiation (Vainio et al., 1993; Kim et al., 1998; Kulessa et
al., 2000; Ramos and Robert, 2005). Further, in both the
embryonic tooth and palate, Msx/ has been shown to be

necessary for expression of Bmp4 and/or Bmp2 (Zhang et al.,
2000; 2002). Interestingly, exogenous Bmp4 or a mesenchy-
mally expressed Bmp4 transgene were capable to rescue the
tooth developmental arrest and CP, respectively, in Msx/ -
mice (Bei et al., 2000; Zhang et al., 2002). Further elegant
experiments (Zhang et al., 2002) indicated that Msx1 and Bmp4
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Fig. 2. Histological sections (A—B, E-J) stained with the Alcian Blue-van Gieson method showing the developing palate of mouse embryos at E15-E15.5 (A, B, E, F),
E15.5(G,H)and E17.5 (1, J). Sections in panels A, B, E and F are from the same specimen shown in Fig. 1J and have been taken at slightly more posterior levels to the section
shown in Fig. 1J. Whole-mount (C) and tissue section (D) of developing palates from K/4-Cre/"; R26R/* embryos at E15-E15.5 showing p-galactosidase activity (dark
blue color). In panel A, the opposing palatal shelves (PS) have just made contact with each other through their MEE, creating the medial epithelial seam (MES). Note the
regressing MES (D—F). The fact that mesenchymal cells at the midline are 3-galactosidase-negative rules out the occurrence of any epithelial-mesenchymal transformation
of the MES. The white arrow indicates a [3-galactosidase-positive epithelial island (D). Disappearance of the MES and establishment of mesenchymal confluence (G, H).
Differentiation of the remaining epithelium of the palate into ciliated respiratory (CRE) and squamous oral (SOE) epithelia. The white arrow in panel H indicates an epithelial
island, remnant of the MES, that will disappear later. b, developing palatal process of the palatine bone; bv, blood vessel; NP, nasopharynx; P, palate; T, tongue.
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function in an autoregulatory loop in regulating mesenchymal
proliferation in the anterior palate.

Recently, nestin-Cre-mediated removal of type I Bmp
receptor (BmpR1A; Alk3) as well as Bmp4 activities demon-
strated distinct functions for Bmp signaling in lip fusion and
secondary palate development in mice (Liu et al., 2005).
Ablation of BmpRI1A function in both the epithelium and
mesenchyme of lip and palate primordia was found to generate
bilateral cleft lip and palate. Altered cell proliferation and
misexpression of Barxl and Pax9 in the palate as well as
precocious cell death in the fusing lip seem to be the cause of the
clefting in the Bmprla mutants. In these, expression of other
important factors such as Msx/, Tbx22 and Osr2 was
unchanged. However, conditional removal of Bmp4 activity
resulted in isolated cleft lip (Liu et al., 2005). The latter
phenotype seems at odds with the previously demonstrated
important role for mesenchymal Bmp4 in the developing palate
(Zhang et al., 2002). Further studies are necessary to provide an
explanation for these differences. Keratin 14-Cre-mediated
targeted mutation of Bmprla, which inactivates this receptor in
ectodermally derived tissues, including tooth, skin and palatal
epithelia, has been shown to affect tooth and hair follicle
development. However, the palate seems to develop normally in
mutant mice (Kobielak et al., 2003; Andl et al., 2004).
Altogether, these observations indicate that BmpR1A functions
primarily within the PS mesenchyme.

Targeted inactivation of Osr2 indicates a role for this
transcription factor in medio-lateral (see below) patterning of
the PS. In Osr2™ mice, the proliferation defects in the PS
mesenchyme and the delayed elevation of the PS seem to be
independent of Msx1, Bmp, Shh and Tbx22 inputs but may be
linked to Pax9 and Osrl function (Lan et al., 2004).

Other studies addressed the role of Fgf signaling during early
palate development by analyzing mouse embryos lacking the
functions of Fgf10 and FgfR2b (Rice et al., 2004; Alappat et al.,
2005). In the Fgfl0 and Fgfr2b”" mutants, altered cell
proliferation within both the PS mesenchyme and epithelium as
well as increased apoptosis within the epithelium seem to be the
primary causes of CP. Those studies also revealed an interesting
epithelial-mesenchymal signaling loop. By signaling via its
receptor FgfR2b in the PS epithelium, the mesenchymally
derived Fgf10 brings not only about epithelial proliferation and
survival but also induces expression of Shh within the
epithelium. Shh, in turn, signals to the mesenchyme and
stimulates cell proliferation (Rice et al., 2004).

In general, signaling activities are subject to tight spatio-
temporal control, and in many instances too much or too little of
a good thing can be detrimental to a developing organ. This is
well illustrated in anomalies caused by deregulated Hedgehog
(McMahon et al., 2003) and Fgf (Rice, 2005; Nie et al., 2006)
signaling. While Fgfl10/FgfR2b activity plays a crucial role
during palatogenesis, it appears to be subject to a tight
spatiotemporal regulation as recently shown in mice lacking
Shox2 (Yu et al., 2005). Shox2”~ mice (Yu et al., 2005)
develop a very rare type of palatal clefting that may also be
found in humans and other mammalians (Schiipbach, 1983); the
soft palate is intact, whereas the hard palate is cleft. Abnormal

proliferation and apoptosis are likely at the core of the clefting.
Surprisingly, a number of protagonists implicated in palatogen-
esis, including Msx1, Bmp4, Pax9, Lhx8, Osr2, TefB3 and
Jag?2, were found to be expressed normally. In contrast, Figf10
and Fgfr2c were expressed at ectopic sites within the PS
mesenchyme of the Shox2™~ mice (Yu et al., 2005). These
studies re-emphasize the importance of a fine tuning of the
timing and sites of signaling activities for normal development
to take place.

Tgfp peptides activate the membrane receptor serine/
threonine kinase quaternary complex made of two type II and
two type I receptors. The type I Tgfp receptor AlkS has been
recently shown to play a key role in craniofacial and palate
development (Dudas et al., 2006). The craniofacial anomalies of
Alk5 mutants were more severe than those in corresponding
mutants lacking the function of the TGFR type II receptor
(TgfpRID) in cranial neural crest derivatives (Ito et al., 2003).
Those striking differences have been suggested to be due to
AIkS function in mediating signalings by ligands other than
Tgfp1-3 and to the ability of AlkS to function with type II
receptors other than TgfBRII (Dudas et al., 2006). In contrast to
embryos lacking 7gfbr2 in the PS mesenchyme, which displays
reduced cell proliferation (Ito et al., 2003), the 4A/k5-deficient
PS mesenchyme seems to be hyperproliferative and to undergo
massive apoptosis (Dudas et al., 2006), again pointing to
differences in the signaling functions of these two receptors. In
humans, abnormally high Tgfp activity impinges upon palate
formation as demonstrated in individuals bearing mutations in
TGFBRI or TGFBR2 (Loeys et al., 2005). These findings
indicate that while signaling activities of type I and type II Tgfp3
receptors are crucial, the amplitude of such signals must be
tightly controlled for normal palatogenesis.

With the exception of the developing limb, organs consisting
of an epithelium and a mesenchyme express the Hedgehog
family members, Shh or Indian hedgehog (Ihh), in the epithelial
compartment, whereas targets and effectors of the Hedgehog
pathway are found in both tissue layers, indicating Shh and Thh
activities at a distance from their sources (McMahon et al.,
2003). In the developing palate, Shh is produced in the PS
epithelium, whereas its membrane receptor Patchedl (Ptcl) is
present in both the epithelium and mesenchyme. The Hedgehog
transcriptional effectors Glil-3 are expressed in the PS
mesenchyme (Rice et al., 2006) but are present at low levels in
the PS epithelium as well (AGL, unpublished). Abrogation of
Shh function in the palate epithelium generates CP. In contrast,
epithelial loss of function of Smoothened (an obligatory and
nonredundant component for all Hedgehog signaling) does not
generate CP, implying that the PS mesenchyme is the major
target for Shh action (Rice et al., 2004). However, this does not
exclude the possibility of an indirect action of Shh on the PS
epithelium via Shh-induced mesenchymal inputs. Shh has been
shown to act as a powerful mitogen in numerous developmental
and neoplastic contexts (McMahon et al., 2003). In vitro cultures
showed that Shh stimulates PS mesenchymal proliferation (Rice
et al., 2004). Other in vitro studies have shown that Shh induces/
maintains Bmp2 expression, and that Bmp2 mediates Shh
mitogenic effects on PS mesenchyme (Zhang et al., 2002).
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Fig. 3. View of the roof of the oral cavity showing the secondary (SP) and primary (PP) palates in a wild-type (A) and a K14-Cre; Shh" mutant (B) mouse fetuses at
E17.5-E18. The K14-Cre; Shh™* mutant, which lacks Shh function in the palate, develops a wide cleft of the secondary palate. Panels C and D are sections stained
with Alcian Blue-van Gieson stain from the specimens shown in panels A and B, respectively. Note the severe hypoplasia of the palatal shelves (PS) which failed to
elevate in the mutant (D). M1, upper first molar; NC, nasal cavity; NS, nasal septum; T, tongue.

Loss of the Sall3 gene in mice generates palatal deficiency
characterized by hypoplasia of the soft palate and epiglottis
(Parrish et al., 2004). Sall3, which is a member of the Spalt
gene family encoding putative transcription factors, is
expressed in the palatal mesenchyme (Parrish et al., 2004).
Interestingly, the Spalt genes have been shown to be down-
stream targets of Hedgehog signaling in both Drosophila and
vertebrates (Koster et al., 1997; Sturtevant et al., 1997), and
hypoplasia or absence of the epiglottis has been reported in
humans with Pallister-Hall syndrome caused by GLI3 muta-
tions. Thus, interactions between the Hedgehog pathway and
Spalt genes might occur during palatogenesis.

Mutations of the p63 (TP63) gene encoding the transcription
factor p63, a member of the p53 family, cause the three allelic
disorders ectrodactyly ectodermal dysplasia-clefting syndrome
3, ankyloblepharon-ectodermal dysplasia-clefting syndrome
and Rapp-Hodgkin syndrome (Celli et al., 1999; McGrath et
al., 2001; Bougeard et al., 2003; Shotelersuk et al., 2005).
Heterozygous p63 mutations seem also to cause nonsyndromic
CL/P (Leoyklang et al., 2006). The presence of at least six
different isoforms of p63, some of which display opposing
activities (Yang et al., 1998; van Bokhoven and Brunner, 2002),
complicates analysis of p63 function and may underlie the wide
phenotypic spectrum of anomalies in the above syndromes. p63
plays a pivotal role in epithelial development, where it regulates
the expression of an array of factors that are essential for cell
proliferation, integrity and survival (Mills et al., 1999; Yang et
al., 1999; Koster et al., 2004; Carroll et al., 2006). Homozygous
mice lacking p63 display limb, maxillary and palatal truncations
and lack ectodermally derived appendages (Mills et al., 1999;
Yang et al., 1999). The developing limb buds of p63 mutants
lack a morphologically and molecularly distinct apical ecto-

dermal ridge that is crucial for epithelial-mesenchymal
interactions driving limb outgrowth (Mills et al., 1999; Yang
et al., 1999). Altered epithelial-mesenchymal interactions may
also underlie the CL/P in humans with p63 mutations. In the
fusing ectoderm of the nasal processes of embryos lacking
Bmprla, p63 expression has been shown to be down-regulated
(Liu et al., 2005), suggesting that p63 is a target of Bmp
signaling, echoing the findings in zebrafish (Bakkers et al.,
2002). The exact mode of action of p63 during palatogenesis
awaits further studies.

Recently, high-resolution breakpoint mapping techniques
identified disruptions of the SATB2 gene encoding a home-
odomain protein in two de novo CPO-associated translocations
on 2q32—q33 in humans. The breakpoints seem to result in
functional haploinsufficiency (FitzPatrick et al., 2003). The
mouse homolog of this gene is expressed in PS mesenchyme
during its growth phase (FitzPatrick et al., 2003; Dobreva et al.,
2006), and homozygous mice lacking the function of Satb2
indicate that this factor acts as a molecular node in regulating
craniofacial patterning and osteoblast differentiation (Dobreva
et al, 2006). In contrast to SATB2 haploinsufficiency in
humans, heterozygous mice with one functional Sarb2 allele
are phenotypically normal, suggesting species-specific require-
ment for Satb2 dosage. In the Sath2”~ embryos, the PS
display peculiar bulges, indicating a patterning defect during
the growth phase, and fail to elevate on time, probably as a
consequence of hindrance by the tongue. While the reduced
expression of Lhx8 in the Sarb2 mutants (Dobreva et al., 2006)
might be linked to palatal clefting it cannot account for the
patterning defects, since in mutants lacking L4x8 which display
a CPO (see below) the PS are devoid of patterning anomalies
(Zhao et al., 1999).
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Genetic loss-of-function

Causes of cleft palate

References

Signaling proteins and receptors

Activinb-A

Activin receptor type 11

av integrins

Bmprla (Alk3)
nestin-Cre-mediated ablation)

Bmp type I receptor (Alk2)
Wntl-Cre-mediated ablation

Egfrr

Et]

Ephb2; Ephb3

Fgfl0

Fgfl8
Fgfr2b
Follistatin
Gabrb3
Jagged?

Pdgfc

Pdgfc; Pdgfa compound mutants
Pdgfra

(Wntl-Cre-mediated ablation)
Ryk
YRAR
Shh (K14-Cre-mediated ablation)
Tgfb2
Tgfb3
Tgfbr2

(Wntl1-Cre-mediated removal)
Tgfbr2

(K14-Cre-mediated removal)
Tgfbrl (AlkS)

K14-Cre-mediated removal
Tgfbrl (AlkS)

Wntl-Cre-mediated removal

Transcription factors

Different compound mutants of
Alx4 and Cartl

Dix1

DIx2

DIx5

Foxc2 (previously Mfhl)

Foxel(previously 7itf2)

Foxf2

Gli2

Gli3 xtJ

Hicl

Hoxa2

Myf5; MyoD
Lhx8

Msx1

Osr2

po3

Pax9
Pitx]

A

A

Palatal shelves elevate but fail to make contact

Cell proliferation defects and altered anterior posterior patterning

A

Failure of fusion of the palatal shelves (persistence of the MEE)

A

Hypoplastic palatal shelves

Proliferation defects and increased apoptosis in palatal shelves; Loss of
Shh expression, aberrant adhesion of palatal shelves with other oral
epithelia

A

Altered proliferation in palatal shelves

A

Palatal shelves elevate but fail to make contact

Aberrant adhesion between palatal shelf and oral epithelia secondary to
altered differentiation of the epithelium of the tongue and mandible
epithelium

Hypoplastic palatal shelves, delayed elevation and failure of fusion of
palatal shelves

A

A

A

A

Altered proliferation and increased apoptosis in palatal shelves
A

Failure of fusion of palatal shelves

Proliferation defects of palatal mesenchyme

Impaired palatal fusion (partial) due to lack of apoptosis and persistent
proliferation of the MEE/MES

Impaired palatal adhesion and fusion (partial) due to decreased MEE
filopodia and to lack of apoptosis of the MES

Increased apoptosis and cell proliferation in the palatal shelves.
Anomalies in other skeletal craniofacial structures may also contribute
to CP.

A

A
A
A
A(Craniofacial defects similar to those in G/i2 mutants)

Palatal shelves elevate but fail to fuse with each other
A?

[ =~

Primary palate and secondary palate do not fuse with each other
Palatal shelves elevate but fail to make contact

Altered proliferation in palatal shelves

Impaired proliferation and medio-lateral patterning in palatal shelves
Altered epithelial-mesenchymal interactions. Palatal shelf epithelial
differentiation defects?

A

A

Matzuk et al., 1995a,b
Matzuk et al., 1995a
Bader et al., 1998

Liu et al., 2005

Dudas et al., 2004b

Miettinen et al., 1999

Kurihara et al., 1994

Orioli et al., 1996

Rice et al., 2004; Alappat et al., 2005

Liu et al., 2002; Ohbayashi et al., 2002

De Moerlooze et al., 2000; Rice et al., 2004
Matzuk et al., 1995¢

Homanics et al., 1997; Hagiwara et al., 2003
Jiang et al., 1998; Casey et al., 2006

Ding et al., 2004

Ding et al., 2004
Tallquist and Soriano, 2003

Halford et al., 2000

Lohnes et al., 1993

Rice et al., 2004

Sanford et al., 1997

Kaartinen et al., 1995; Proetzel et al., 1995
Tto et al., 2003

Xu et al., 2006
Dudas et al., 2006

Dudas et al., 2006

Qu et al., 1999

Qiu et al., 1997

Qiu et al., 1997

Acampora et al., 1999; Depew et al., 1999
Lida et al., 1997

De Felice et al., 1998

Wang et al., 2003

Mo et al., 1997

Mo et al., 1997

Carter et al., 2000

Gendron-Maguire et al., 1993; Rijli et al., 1993;
Barrow and Capecchi, 1999

Rot-Nikcevic et al., 2005

Zhao et al., 1999

Satokata and Maas, 1994; Zhang et al., 2002
Lan et al., 2004

Mills et al., 1999; Yang et al., 1999

Peters et al., 1998
Lanctot et al., 1999; Szeto et al., 1999

(continued on next page)
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Genetic loss-of-function

Causes of cleft palate

References

Transcription factors
Pitx2

PrxI (previously Mhox)
Prxl; Prx2

Rae28

Satb2

Sall3
Shox2

Sim2

Sox9 haploinsufficiency
Thx1

Cytoplasmic proteins

Palatal shelves elevate but are hypoplastic

A

A

A

Patterning defects of the developing palate. Anomalies of other
craniofacial structures may also contribute to the CP.

Hypoplastic soft palate and epiglottis

Cleft of the anterior portion of the secondary palate due to abnormal
proliferation and apoptosis.

Palatal shelves are hypocellular and exhibit increased extracellular
glycosaminoglycans

A

A

Lu et al., 1999
Martin et al., 1995
ten Berge et al., 1998
Takihara et al., 1997
Dobreva et al., 2006

Parrish et al., 2004
Yu et al., 2005

Shamblott et al., 2002
Bi et al., 2001

Jerome and Papaioannou, 2001

Cecconi et al., 1998
Asada et al., 1997; Condie et al., 1997

Apafl Failure of fusion of palatal shelves owing to failure of apoptosis
Gadl Delayed lifting of palatal shelves
3b-hydroxysterol-D7-reductase Hypoplastic palatal shelves

IKK1 Cleft palate

pS7kip2 A

Viaat A

Extracellular matrix components
Col2al A
Perlecan A

Insertional mutations
CASK (loss-of-function) A
Dlg (loss-of-function) A
Thx10 (gain-of-function).
Dancer mutation
p23-Thx10 transgenic mice

Cleft lip and cleft palate due to ectopic expression of 7bx/0

Cleft lip and cleft palate similar to that of Dancer mice

Wassif et al., 2001

Li et al., 1999

Yan et al., 1997; Caspary et al., 1999
Wojcik et al., 2006

Pace et al., 1997
Arikawa-Hirasawa et al., 1999

Wilson et al., 1993; Laverty and Wilson, 1998
Caruana and Bernstein, 2001
Bush et al., 2004

Bush et al., 2004

A Indicates cleft palate conditions that are or may be secondary to other craniofacial bone defects and/or hindrance by the tongue.

After vertical growth, the PS elevate into a horizontal
position, and further extension allows contact between the
opposing PS. Some genetic disruptions affect this second phase
of PS growth. For instance, mice lacking 7gfbr2 in the PS
mesenchyme develop a CP due to reduced extension of the
horizontal PS (Ito et al., 2003), and paracrine Tgf33 signaling in
the PS mesenchyme seems to be required for this growth phase
(Xu et al., 2006). Similarly, embryos lacking platelet-derived
growth factor ¢ (Pdgfc) activity show normal PS growth up to
E13.5; however, after a delayed lifting, the hypoplastic PS are
unable to abut (Ding et al., 2004). Loss of function of single-
minded?2 (Sim2) in mice generates either a complete cleft of the
secondary palate or a cleft of its posterior-most portion
(Shamblott et al., 2002). The complete cleft seems to be caused
by lack of outgrowth of the PS which are, however, able to
elevate. The PS of Sim2~" mice are hypocellular between
E14.5 and E16.5, and histochemical staining suggested the
presence of abnormally high amounts of hyaluronan (Shamblott
et al., 2002). This aspect is interesting in light of the known role
of hyaluronan (hyaluronic acid), a major component of the
extracellular matrix, in regulating cell proliferation, differentia-
tion and migration.

Several mutant mice display multiple craniofacial anomalies,
where CP is one facet (Table 1). This constitutes a hurdle for the

distinction between clefting due to endogenous anomalies
within the palate and clefting secondary to malfunction and/or
malformation of other structures. However, many of the
targeted genes in those mouse models are expressed in the
developing PS of wild-type embryos, implying intrinsic
functions for these genes within the palate. Examples include
Pitx] (Szeto et al., 1999), Pitx2 (Lu et al., 1999), Gli2 (Mo et
al., 1997; Rice et al., 2006), Ryk (Halford et al., 2000), Thx/
(Jerome and Papaioannou, 2001; Zoupa et al., 20006), Foxf2
(Wang et al., 2003), Pdgf receptor a (Pdgfra) (Soriano, 1997;
Tallquist and Soriano, 2003). In the case of PdgfR-«, product of
Pdgfra, there is recent evidence that the main action of this
receptor in the PS mesenchyme is to mediate the paracrine
function of the epithelially produced Pdgfc (Ding et al., 2004).

While the above mutations generate loss of gene function,
the spontaneous mutation Dancer in mice, which generates CL/
P, has been shown to cause ectopic expression of a variant
Thx10 transcript in palate and lip primordia as well as in other
structures. Furthermore, ectopic transgenic overexpression of
Tbx10 recapitulates the CL/P phenotype of Dancer mice
(Bush et al., 2004). Thus, expression of 7hx/0 in forbidden
territories is the cause of the clefting anomalies in Dancer
embryos. How this gene affects palatogenesis remains to be
elucidated.
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Molecular control of palatal shelf elevation

Despite the availability of mutant mice with CP due to failure
or delayed PS elevation, the exact mechanisms that bring the PS
from a vertical to a horizontal position are still poorly defined.
Various mechanisms have been postulated and remain basically
unchanged since the subject was first reviewed by Lazzaro in
1940 and later by Ferguson in 1988. The general consensus is
that PS elevation is a rapid movement, triggered by both
intrinsic forces within the PS proper and by influences from
other craniofacial and oral structures, including movement of
the tongue, growth of the basicranium and mandible (Ferguson,
1988).

The role of steric hindrance by the tongue in preventing PS
elevation and inducing CP is well illustrated in Hoxa2 ™~ mice.
In these, an abnormal position of the tongue is caused by
insertional defects of the hyoglossus muscle into the hyoid
bone. The penetrance of CP was dramatically reduced when the
tongue defect was rescued in compound mutants lacking both
Hoxal and Hoxa2 function (Barrow and Capecchi, 1999).

The concept of rapid PS self-generating intrinsic “erectile”
forces instigating their elevation was first suggested by Lazzaro
(1940) based on observations of embryos with one PS
horizontal and the other vertical. Lazzaro also suggested
swelling of the PS due to increase in extracellular matrix as
the causative factor. The role of the extracellular matrix in PS
elevation has been supported and refined by further studies and
is at present accepted as an important determinant of PS
elevation. Those studies (reviewed in Ferguson, 1988) sug-
gested that a progressive differential accumulation of glycosa-
minoglycans, primarily hyaluronan, in the PS plays a role in
their elevation. Hyaluronan is a highly charged glycosamino-
glycan that retains high amounts of water, thus forming
hydrated gels leading to the expansion of the extracellular
matrix. Other constituents of the PS such as collagen fibers,
vascularization, the epithelial covering as well as polarized
alignment of mesenchymal cells have also been suggested to
contribute to the PS’s intrinsic elevating force (Ferguson, 1988).

Early studies attributed a role to neurotransmitters in PS
elevation (Ferguson, 1988). At present, it is widely accepted
that the neurotransmitter y-aminobutyric acid (GABA) reg-
ulates not only neuronal activities but also cell migration,
survival, proliferation and differentiation in both neuronal and
nonneuronal cells (Varju et al., 2001). Teratological studies in
rodents showed that GABA or GABA agonists generate CP by
inhibiting PS elevation, whereas GABA antagonists stimulate
the process (Miller and Becker, 1975; Wee and Zimmerman,
1983). Presence of endogenous GABA or glutamic acid
decarboxylase 67 (Gad 67 encoded by Gadl), one of GABA
biosynthetic enzymes, has also been demonstrated in the PS
(Wee et al., 1986; Asada et al., 1997; Hagiwara et al., 2003).
The implication of GABA in palate development was further
demonstrated by genetic studies in mice lacking the 33 subunit
of GABA 4 receptor or lacking Gad67, which both develop a CP
without other craniofacial malformations (Culiat et al., 1993;
1995; Asada et al., 1997; Condie et al., 1997; Homanics et al.,
1997). The remarkable similarity in the CP phenotype between

mutants lacking Gad67 and those deficient in GABAAP3
indicates that GABA signaling through GABA, receptor is
crucial for palatogenesis. In perinatal fetuses lacking Gad67 and
GABA 43, the PS are elevated above the tongue. However, it is
still not clear whether the CP was secondary to growth defects
or to delayed elevation of the PS, as no survey of palate
development at different stages was performed in those mutants.
Since GABA is an important neurotransmitter in the brain,
concerns were raised as to whether the CP in the above
mutants was merely a secondary effect due to neuronal
dysfunction. However, transgenic mice that had a normal
neuronal GABA 43 but still lacked this receptor’s function in
the palate developed a CP (Hagiwara et al., 2003), implying a
role for GABA signaling within the palate. Recently, inactiva-
tion of the murine neuronal vesicular inhibitory amino acid
transporter (Viaat), which allows synaptic co-release of GABA
and glycine, has been shown to generate a CP due to tongue
immobility (Vojcik et al.,, 2006). This, however, does not
exclude a function for GABA signaling within the palate proper.
Both increased and decreased GABA signaling impinges upon
palatogenesis. This indicates the requirement of a tight control
of the amplitude of GABA signaling for an adequate
development. Interestingly, significant associations between
GABRB3 (Scapoli et al., 2002) and GADI (Kanno et al., 2004)
and nonsyndromic CL/P have been recently reported in humans.

Delayed PS elevation occurs in Osr2~~ (Lan et al., 2004),
Pdgfc™" (Ding et al., 2004) and in Dancer (Bush et al., 2004)
mutant mice. While altered mesenchymal proliferation patterns
may underlie the delayed lifting of the shelves in those models,
changes in extracellular turnover are also possible contributing
factors that await further studies.

Molecular control of palatal shelf fusion

Fusion of the opposing PS is an important step during
palatogenesis. This takes place by a sequence of events,
including removal of the superficial flat periderm cells, contact
and adhesion of the opposing MEE creating the MES,
degeneration of the MES and, finally, mesenchymal confluence
at the midline. Anteriorly, the PS fuse also with the nasal septum
to form the nasopalatine junction and with the primary palate.
Disappearance of the MES is necessary for a successful palatal
fusion. Until recently (Vaziri Sani et al., 2005), the fate of the
MES has been subject to considerable disagreements, and three
mechanisms imparting the disappearance of the MES have been
suggested: apoptosis, epithelial-mesenchymal transformation
(EMT) and migration of MES cells towards the periphery of the
midline.

Early and recent studies provided morphological and
molecular evidence for the occurrence of apoptosis in the
regressing MES (Gliicksmann, 1951; Saunders, 1966; DeAn-
gelis and Nalbandian, 1968; Smiley and Dixon, 1968; Shapiro
and Sweney, 1969; Smiley and Koch, 1975; Mori et al., 1994;
Tanigushi et al., 1995; Martinez-Alvarez et al., 2000a,b; Cuervo
et al., 2002; Cuervo and Covarrubias, 2004; Vaziri Sani et al.,
2005). However, others suggested that the cells of the MES as
well as the cells of the epithelial seam along the nasopalatine
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junction remain viable and undergo EMT, i.e., a transdiffer-
entiation of MES cells into fibroblasts. These suggestions were
based on morphological criteria and on cell tracking with
lipophilic molecules (Fitchett and Hay, 1989; Shuler et al.,
1991, 1992; Griffith and Hay, 1992; Nawshad and Hay, 2003;
Nawshad et al., 2004; Hay, 2005). EMT of the MES has been
proposed as the major mechanism underlying the disappearance
of the MES to generate mesenchyme continuity, thus preventing
palatal clefting (Nawshad and Hay, 2003; Nawshad et al., 2004;
Hay, 2005). The establishment of the concept of EMT as the
prevailing mechanism of MES disappearance led to several
studies attributing roles to different molecules in mediating
EMT, including Tgfp3, Lefl, Smads, RhoA, phosphatidylino-
sitol 3-kinase, matrix metalloproteinases (MMPs), and Snail
(Kaartinen et al., 1997, 2002; Sun et al., 1998; Blavier et al.,
2001; Kang and Svoboda, 2002, 2005; Nawshad and Hay,
2003; Dudas et al., 2004a; Martinez-Alvarez et al.,, 2004;
Nawshad et al., 2004; Hay, 2005).

However, a recent study (Vaziri Sani et al., 2005) using
genetic marking of Shh- and keratin-14-expressing palatal
epithelial cells and their progeny ruled out the occurrence of
EMT during PS fusion with each other and with the nasal septum
(see also Fig. 2D). In addition to the reliability provided by the
use of both the K14-Cre- and the Shhgfp-Cre-mediated genetic
marking in the fate-mapping of the MES, special care was taken
to preserve the morphological integrity of PS mesenchyme and
to avoid the use of thick, overstained sections which may lead to
masking of any lacZ-negative epithelial cells (Vaziri Sani et al.,
2005). These criteria were not met in a recent study (Xu et al.,
2006). The findings ruling out the occurrence of EMT during
palatal fusion thus imply that while the abovementioned factors
may have a role in palate fusion, as they are expressed and
activated during this developmental stage, it is not to regulate
EMT. Some proponents of the EMT concept reject the
involvement of apoptosis in the regressing MES based on the
fact that in studies marking apoptotic cells, the majority of the
MES displays a healthy look with only a few cells showing
apoptotic features (Kang and Svoboda, 2005). However, it
should be kept in mind that regression of the MES is a
progressive, yet rapid event, and a synchronized massive cell
death along the MES would be detrimental to palatal fusion. The
progressive nature of MES regression is well portrayed by the
presence of epithelial remnants of the MES that are located at
different dorso-ventral and anterior—posterior levels at the
midline as well as along the nasopalatine junction (Vaziri Sani
et al., 2005; Figs. 2D, J). The crucial role for apoptosis during
palatal fusion is demonstrated in mice lacking the function of the
apoptotic protease activating factor 1 (Apafl), which display a
CP due to persistence of the MES (Cecconi et al., 1998). More
recent experimental studies in vitro point to the requirement of
apoptosis for palatal fusion, a process that is likely regulated by
retinoids (Cuervo et al., 2002).

Migration of cells of the MES along the midline towards the
oral and nasal epithelia has also been suggested as an alternative
mechanism underlying MES regression (Carette and Ferguson,
1992). However, a recent study (Cuervo and Covarrubias, 2004)
showed that the cells which migrate upon PS contact to form

epithelial triangles along the midline within the oral and nasal
epithelia are those of the periderm that cover the MEE. Those
findings are also contrasting with previous studies suggesting
shedding of periderm cells before PS contact (Fitchett and Hay,
1989). It seems also that peridermal cells are necessary for
establishing the first contact between the opposing PS, and that
their migration away from the midline is necessary for
triggering apoptosis in both the MES and periderm cells
(Cuervo and Covarrubias, 2004). These aspects need to be
further studied with specific markers of the periderm.

Targeted gene ablation in mice identified several factors
playing a determinant role in palate fusion. These include
Tegfp3 (Kaartinen et al.,, 1995; Proetzel et al., 1995), the
forkhead domain-containing transcription factor Foxel (pre-
viously TTF-2; De Felice et al., 1998), epidermal growth factor
receptor (EgfR; Miettinen et al., 1999) and Pdgfc (Ding et al.,
2004). Loss of function of these factors generates CP with no or
minor other craniofacial anomalies. In vitro explant cultures
showed that PS from TgfB3, Egfir and Pdgfc mutants fail to fuse
owing to failure of the MES to degenerate (Kaartinen et al.,
1995; Miettinen et al., 1999; Ding et al., 2004). Importantly,
studies in humans identified a mutation within the forkhead
domain of FOXE! in siblings with thyroid agenesis, CP and
choanal atresia (Clifton-Bligh et al., 1998) and associated
TGFB3 with nonsyndromic CP (Lidral et al., 1998).

Cell—cell junctional complexes are essential for cell survival,
morphogenesis, proliferation and differentiation. Adherens
junctions (AJs) are key structures for cell-cell adhesion. They
contain at least two types of cell adhesion molecules (CAMs),
cadherins and nectins (Tachibana et al., 2000). In epithelial
cells, a-catenin functions as a molecular switch that regulates
actin filament assembly at sites of E-cadherin-mediated cell—
cell adhesion (Gates and Peifer, 2005). Nectins are immuno-
globulin-like CAMs belonging to a family of four members and
are linked to the actin cytoskeleton through afadin. Accumulat-
ing evidence indicates that nectins first bring about cell—cell
adhesion and thereafter recruit cadherins to the nectin-based
adhesion sites through afadin and catenins (Irie et al., 2004).
Adhesion of the opposing MEE is an important step of
palatogenesis. In both human and mouse embryos, E-cadherin
is expressed in epithelia covering the frontonasal and medial
nasal processes as well as during the different stages of palate
development, including in the epithelial islands, remnants of the
MES (Montenegro et al., 2000; Tudela et al., 2002; Vaziri Sani
et al., 2005; Frebourg et al., 2006). Targeted mutation of E-
cadherin in mice is incompatible with development beyond the
morula stage and morula cells dissociate shortly after compac-
tion (Riethmacher et al., 1995). However, mutations of CDH1/
E-cadherin which delete the extracellular cadherin repeat
domains required for cell-cell adhesion have been recently
associated with CL/P in families with hereditary diffuse gastric
cancer (Frebourg et al., 2006). E-cadherins are known to form
dimers, indicating that the mutant proteins might have trans-
dominant negative effects over the wild-type proteins (Frebourg
et al., 2000).

Mutations of the poliovirus receptor related-1 (PVRLI) gene
encoding nectinl cause the autosomal recessive syndrome CL/
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P-ectodermal dysplasial (CLPED1) which includes Zlotogora-
Ogiir syndrome and Margarita Island ectodermal dysplasia
(Suzuki et al., 2000) and seem to constitute a genetic risk factor
for nonsyndromic CL/P (Suzuki et al., 2000; Scapoli et al.,
20006). The clinical features of CLPED1 include CL/P, tooth and
hair anomalies, mid-facial hypoplasia, limb anomalies and
sometimes mental retardation (Rice, 2005). As expected, nec-
tinl is co-expressed with E-cadherin in epithelia, including the
palatal MEE in both human and mouse embryos (Suzuki et al.,
2000; Ding et al., 2004). However, mice deficient in either
nectinl, nectin2 or nectin3 do not display defects in AJs and
tight junctions in most tissues where nectins are expressed, and
nectinl-deficient mice do not develop CP. This might be a
consequence of functional redundancy of each nectin in these
tissues (Irie et al., 2004 and references therein).

The exact cellular alterations leading to CL/P following
mutations of CDH1/E-cadherin and PVRLI are still not well
defined. The cleftings might be caused by impaired epithelial
differentiation and integrity and/or loss of the adhesive func-
tions of the lip and palatal epithelia. Although altered lip and
palatal primordia fusion is likely the cause of clefting in the
absence of nectinl and E-cadherin, there is a need for animal
models and further studies to elucidate the role of these
molecules in lip and palate development.

During the last few years, extensive efforts have been made
to shed light upon the role of Tgfp3 during palatal fusion.
Adhesion of the MEE upon PS contact is a necessary step for
fusion. Tgfp3, which is expressed in the MEE before and
during PS fusion, has been shown to mediate MEE adhesion of
the opposing PS through filopodia (Taya et al., 1999, Martinez-
Alvarez et al., 2000a) and chondroitin sulfate proteoglycans
(Gato et al., 2002) at the apical surface of MEE cells and to be
necessary for apoptosis of the regressing MES (Martinez-
Alvarez et al., 2000b, 2004). Importantly, in the absence of
TgfB3, MEE cells display altered distribution of E-cadherin, «-
and P-catenins and impaired cell—cell adhesion (Tudela et al.,
2002). Early studies on fusion processes in different systems
consistently show the presence of filopodia at the tip of fusing
epithelial sheets (Fristrom, 1988). More recent studies indicate
that E-cadherin is required for fusion, whereas filopodia seem to
be crucial for proper alignment and guidance of cell sheets that
are fated to fuse, but not for the fusion process itself (Schock
and Perrimon, 2002). Thus, TgfP3 plays a crucial role during
the different steps of MEE adhesion and fusion.

Other studies implicated TgfR3 in controlling the remodeling
of the extracellular matrix through regulation of the expression
of Mmp13, Mmp?2 and Tissue inhibitor of metalloproteinase-2
(Blavier et al., 2001). These studies indicate that TgfP33
signaling operates not only in the MEE, but is also involved in
mediating epithelial-mesenchymal interactions leading to tissue
changes that regulate palatal fusion. The effects of Tgf33 on
MES regression seem to be mediated by the Tgfp3 type I and the
Tefp type I receptor (AlkS)/Smad pathway as shown by loss and
gain of function studies in vitro and in vivo (Dudas et al., 2004a,
2006; Cui et al., 2005; Xu et al., 2006). However, A/k5 is not
expressed in the MEE of the posterior palate just before and after
fusion (Dudas et al., 2004a). As a consequence, posterior palate

fusion of palatal explants was not inhibited following inactiva-
tion of Alk5 in vitro, whereas fusion was inhibited in the anterior
palate (Dudas et al., 2004a). These findings are at odds with a
recent study showing cleft of the posterior palate and superficial
adherence of the middle and anterior palate following genetic
ablation of A/k5 in the palatal epithelium (Dudas et al., 2006). It
is possible, however, that A/k5 is expressed at low levels in the
posterior palate, and that adenovirus-mediated expression of a
dominant-negative A/k5 in vitro is not sufficient to abrogate its
activity as in the genetic in vivo system. While ablation of
Tgfbr2 in the PS mesenchyme generates CP secondary to
abnormal mesenchymal proliferation (Ito et al., 2003), K14-Cre-
mediated removal of this receptor activity in the palatal
epithelium generates cleft of the soft palate and submucous
cleft palate (Xu et al., 2006). The CP in mice lacking epithelial
Alk5 and Tgfbr2 is secondary to persistence of the MES owing
to failure of cells to undergo apoptosis (Dudas et al., 2006; Xu et
al., 2006). In addition, continued abnormal proliferation of the
MEE in the Tgfbr2 deficient palatal epithelium generates
epithelial overgrowth that hinders palatal fusion (Xu et al.,
2006).

While inactivation of epithelial A/k5 or Tgfbr2 generates
partial CP (Dudas et al., 2004a, 2006; Xu et al., 2006), TgfB3
mutants display either a complete or partial secondary CP
(Kaartinen et al., 1995; Proetzel et al., 1995). Furthermore,
MEE-driven transgenic expression of Smad2 in a 7gfB3 null
background has been shown to rescue the CP only partially,
with the anterior-most and posterior-most segments remaining
cleft (Cui et al., 2005). These differences may be attributed to
deficient Tgfp3 paracrine signaling that is required for
mesenchymal proliferation (Xu et al., 2006) and/or for the
induction of other mesenchymal factors necessary for epithelial
remodeling in the T7gfB3 mutant model and which are
maintained in mutants lacking epithelial 4/k5 and Tgfbr2.
Another parsimonious explanation is that some epithelial cells
escape Kl14-Cre-mediated ablation of A/kS5S and Tgfbr2.
Interestingly, loss of epithelial TgfBRII activity is followed by
reduction of the expression of /rf6 and Mmp13 in the MEE (Xu
et al., 2000), in agreement with previous studies showing a key
role for Tgfp3 in the induction of these factors in the MEE
(Blavier et al., 2001; Knight et al., 2006). In humans, /RF6
mutations cause CL/P or CPO in Van der Woude syndrome and
are also found in isolated CL/P and CPO (Kondo et al., 2002;
Rice, 2005). Interestingly, IRFs and Smads have been proposed
to share a conserved transactivating domain (Eroshkin and
Mushegian, 1999), and interferon-y has been shown to inhibit
TgfB/Smad signaling (Ulloa et al., 1999), suggesting interac-
tions of the two pathways.

Under normal conditions, PS epithelia do not fuse with other
oral structures. However, in the absence of Fgfl0 PS epithelia
fuse with the tongue and mandible (Rice et al., 2004; Alappat et
al., 2005) at sites of increased apoptosis (Alappat et al., 2005).
These anomalies have been suggested to be caused by a severe
reduction of the expression of Jagged? (Jag2), encoding a
ligand for the Notch family receptors and to ectopic Tgfp3
production in the oral and nasal epithelia (Alappat et al., 2005).
These assumptions are reasonable, given the well established
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role for TgfPA3 in palatal fusion and the phenotype of embryos
lacking Jag2, which display a CP associated with aberrant
fusion of the PS with the tongue and mandible (Jiang et al.,
1998). More recent evidence from analyses of Jag? mutant
embryos indicates that the Jag2-Notch signaling acts primarily
by preventing inappropriate PS adhesion to other oral epithelia
through control of oral epithelial differentiation (Casey et al.,
2000). In contrast to Fgf10 mutants, no ectopic expression of
TgfP3 or its target, Mmp 13, was documented in the Jag2 mutant
oral structures (Alappat et al., 2005; Casey et al., 2006). These
data indicate that the ectopic function of Tgf33 alone cannot
account for the aberrant epithelial adhesions between the PS and
other oral structures. Importantly, the Jag2-Notch signaling was
found to be attenuated in the PS epithelia of wild-type embryos
as compared to the rest of the oral epithelium, thus explaining the
normal differentiation of PS epithelia in the Jag2 mutants
(Casey et al., 2006). These results raise the question of whether
abnormal activation of the Jag2-Notch signaling in the MEE
would prevent PS adhesion. Interestingly, aberrant fusions
between the PS and tongue or PS and mandible have been
described in human embryos and in teratological studies in the
rat (Casey et al., 2006 and references therein). The Fgfand Jag2/
Notch pathways might thus be implicated in those anomalies.

While both Pdgfa and Pdgfc are expressed in the PS
epithelium, they act on the PS mesenchyme via their PdgfR-a.
However, Pdgfc function within the palate seems to be
nonredundant, as Pdgfa in the MEE was unable to rescue the
clefting in Pdgfc”’~ mice, and loss of Pdgfa alone does not
generate CP (Ding et al., 2004 and references therein). Despite
a failed fusion, the PS of Pdgfc mutant mice displayed normal
expression patterns of 7gfB3, Irf6 and Pvrll. Conversely,
TgfB3~" palates exhibited normal Pdgfc expression (Ding et al.,
2004). These important findings unveil Pdgfc signaling as a new
and independent pathway mediating epithelial-mesenchymal
interactions during palatal fusion. Which signals trigger
expression of Pdgfc in the epithelium and Pdgfia in the
mesenchyme, which factors regulate the processing enzyme that
activates the latent form of Pdgfc, and what are the targets of this
signaling pathway? Future studies with this new model will
certainly identify new players in palatogenesis.

Mutants lacking LAx8 develop CP without other craniofacial
anomalies (Zhao et al., 1999). In these, the PS show normal
proliferation and elevate on time but do not make contact and
fuse. It has been suggested that mesenchymal Lhx8 activity may
mediate epithelial-mesenchymal interactions that are crucial for
PS fusion (Zhao et al., 1999). A first step towards addressing
this issue requires LAx8/ PS explant cultures in vitro to
determine whether they fuse or not.

Regionalization of the developing palate along the
medio-lateral and anterior—posterior axes

The PS display a medio-lateral (ML) regional specification
(Fig. 1F) which is translated morphologically into regional
differentiation of the epithelium. The PS epithelia thus
differentiate into a pseudostratified columnar ciliated epithelium
on the nasal/medial side, a stratified squamous epithelium with

the formation of rugae palatinae on the oral/lateral side and,
finally, into a MEE at the tip of the PS which is fated to
disappear upon PS fusion (Figs. 21, J). The developing palate
also displays regional differences along the anterior—posterior
(AP) axis. Early studies documented the existence of higher
amounts of hyaluronan in the anterior palate and in the lateral
half of the PS than in the posterior palate and medial aspect of
the PS, respectively (Knudsen et al., 1985; Brinkley and Morris-
Wiman, 1987; Ferguson, 1988).

Interestingly, these palatal regional differences are back into
focus as a number of genes have been found to be expressed
differentially along the ML and AP axes (Hilliard et al., 2005).
While ML differential gene expression patterns could be taken
as an indication of early events regulating the fate of the PS
epithelia, they might also underlie morphogenetic events
necessary for palatal shelf growth and/or elevation. In this
respect, a recent study (Lan et al., 2004) provided evidence for
the role of Osrl and Osr2 in controlling the ML differential
proliferation of PS mesenchymal cells, necessary for PS growth
and elevation to occur on schedule. First, Osr2 transcripts were
found throughout the palatal mesenchyme but showed a
preferential accumulation in the lateral half of the PS. In
contrast, starting at E13.5, Osr/ was expressed virtually only in
the proximo-lateral regions of the PS. These expression patterns
underlie the unexpected preferential reduction of cell prolifera-
tion in the medial half of the PS of Osr2 null mice (Lan et al.,
2004). The PS of wild-type embryos display differential growth
rates medio-laterally, being faster in the medial than in the
lateral halves (Lan et al., 2004). Interestingly, Pax9 which
encodes a member of the paired class of transcription factors
necessary for palate development (Peters et al., 1998), was
found to display Osr2-dependent dynamic expression patterns
in the PS mesenchyme (Lan et al., 2004). Thus, it seems that
ML dynamic molecular changes occur at the time preceding
palatal shelf elevation, and that Osr genes play a crucial role in
these patterning events.

Elevation of the PS occurs in an AP sequence, and the
horizontal PS approximate and fuse with each other first at the
level of the second rugae, thereafter fusion proceeds anteriorly
and posteriorly (Ferguson, 1988). However, this sequence of
palatal closure does not imply that fusion of the soft palate is
dependent on that of the hard palate. In fact, a rare condition in
which the soft palate is intact whereas the hard palate is cleft has
been reported in both humans and animals (Schiipbach, 1983;
Yu et al., 2005), implying that closure events anteriorly and
posteriorly are not dependent on one another. Interestingly,
Shox2/SHOX2 was expressed solely in the presumptive hard
palate in both human and mouse embryos, which would be
consistent with the palatal phenotype of Shox2™~ mice (see
above). Recombination studies showed that the restricted
expression of Shox2 anteriorly depends on signals produced
by the epithelium of the anterior palate (Yu et al., 2005).

Other factors involved in palatogenesis, including Bmp?2,
Bmp4, Msx1 and Fgfr2b have been found to exhibit differential
expression patterns along the AP axis of the developing palate.
In addition, explant experiments have shown that the anterior
and posterior palatal mesenchymes show different molecular
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and cellular responses to growth factors (Hilliard et al., 2005). both the soft palate and the posterior-most part of the hard palate
In the developing mouse palate, expression of 7bx22 has been (Hilliard et al., 2005; AGL unpublished). This AP pattern,
shown to be restricted posteriorly, in a region encompassing which is not related to the specification of the hard and soft
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Fig. 4. Molecular signalings mediating epithelial-mesenchymal interactions during palatal shelf (PS) growth (A), elevation (B) and adhesion/fusion (C). Mutations of
genes encoding most of the factors shown induce cleft palate in mice (thin frame) or are implicated in palatal clefting in humans (thick frame). Those implicated in
palatal clefting in both mice and humans are indicated by a double frame. Secreted proteins (bold letters) operate within their site of production and/or cross the
basement membrane separating the epithelium (E) and mesenchyme (M) and act in the adjacent tissue layer by binding to their receptors. Stimulatory and inhibitory
activities are indicated by blue arrows and red bars, respectively. Binding of signaling molecules to their receptors is represented by thin lines. Shh may regulate
expression of Sall3 in the palatal M. Fgf10 from the M is necessary for induction of Shh expression in the E. In turn, Shh stimulates a mitogenic response in both the E
and M and prevents apoptosis in the E (not represented). Bmp4 functions in an autoregulatory loop with Msx1 in the M and is necessary for epithelial Sh/ expression.
Shh-induced Bmp2 stimulates mesenchymal cell proliferation. Bmp4 activity modulates the expression of Barx! and Pax9 and is necessary for maintaining the
expression of Shox2. Shox2 activity prevents expression of Fgf/0 and FgfR2c at ectopic sites. Satb2 activity regulates Lhx8 expression. p63 is necessary for epithelial
integrity that is crucial for adequate E—-M interactions and its expression may be regulated by Bmps. Tgf3s emanating from both the E and M signal through TgfBIIR
and TgfPIR heterotetramers to elicit mesenchymal cell proliferation. The asterisks indicate that in humans, mutations of genes encoding TGFRRI and TGFBRII
leading to abnormally increased TgfP signaling are associated with CP. The schematic in panel A does not take into account the regionalized expression patterns of
some factors along the medio-lateral and anterior—posterior axes of the growing PS. Several factors have been suggested to be involved in palatal shelf elevation (B).
Hyaluronan forms gels after binding water and elicits tissue expansion of the PS. Hyaluronan also regulates cell proliferation and migration. Proteoglycan—
glycosaminoglycans (PG-GAG) seem to be crucial for proliferation and polarized alignment of PS mesenchymal cells. Collagen fibers may also control cell
alignment. y-Aminobutyric acid (GABA), synthesized from glutamic acid (Glu) by glutamic acid decarboxylase 67 (GAD67) binds to GABA 4 receptor 33 subunit
(GABAAP3). GABA signaling may elicit a range of biological activities, including cell proliferation and migration necessary for PS lifting. Pdgfc and Osr2 may be
involved in regulating extracellular matrix composition. Ectopic activation of Tbx10 (asterisk) seems to delay PS elevation in mice. Adherence and fusion of the
opposing PS are also under a tight molecular control (C). Tgf3 produced by the MEE induces the accumulation of chondroitin sulfate proteoglycans (CS-PG) at the
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palates, instead reflect molecular heterogeneities which may
have other functional implications in palatal growth.

The above observations point to the existence of a molecular
regionalization within the developing palate. This implies that
mesenchymal and epithelial cells within the PS have different
histories and thus may respond differently to identical inputs.
Keeping these aspects in mind, information gathered from
scrutiny of gene expression patterns along the AP and ML axes
of key players in palate development will certainly help us
understanding the molecular and cellular interactions that take
place during the different stages of palate development.

Concluding remarks

Needless to say, there is a constellation of molecules that are
dispatched and engaged in complex interactions to drive palate
development in a concerted mode of action (Fig. 4). Some of the
factors act as repressors, others as activators, whereas some
display dual effects depending on the temporal and spatial
context. Some genes are ‘guilty by association’ as mutations of
upstream regulators lead to their misexpression. Information
from mouse models point to the importance of well balanced,
spatiotemporally controlled molecular activities, as both defi-
ciencies and overactivations orthotopically or ectopically
impede development. These mouse models are precious as
they offer us the opportunity to continuously probe for new
factors implicated in normal and abnormal palate development.
There is no doubt that major advances have been achieved and
contributed to a better understanding of the molecular and
cellular mechanisms that regulate palatogenesis and cause CP.
However, we still know relatively little about the regulation and
targets of many molecules identified as playing pivotal roles
during palatogenesis (Fig. 4). Also knowing target genes of key
regulators of palate development ensures the identification of
novel risk factors for CP. Careful in vitro functional studies
provide a wealth of information. In this respect, many factors
shown in early meticulous in vitro studies (Ferguson, 1988),
before the ‘molecular era’, to be crucial for palatogenesis turned
out to be involved in palate clefting in both human and mice.
Several different pathways elicit the same cellular responses.
However, many signaling factors such as secreted proteins seem
to be functionally obligatory and nonredundant, since removal
of a single, specific factor may lead to dramatic defects. It is still
unclear how and at which level pathways regulating the same or
antagonistic cellular responses intersect, and addressing these
issues constitutes a challenge for future studies. The interactions
between environmental factors and genes in the ethiopathogen-
esis of CP are another important facet that requires further
efforts. Fortunately, amazing advances have been and continue
to be achieved in different fields providing state of the art
research tools that are being used to unveil more secrets of palate
development and clefting.
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