4,837 research outputs found

    Effects of omega-3 polyunsaturated fatty acid supplementation on cognitive functioning in youth at ultra-high risk for psychosis: secondary analysis of the NEURAPRO randomised controlled trial

    Full text link
    BACKGROUND: Cognitive impairments are well-established features of psychotic disorders and are present when individuals are at ultra-high risk for psychosis. However, few interventions target cognitive functioning in this population. AIMS: To investigate whether omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation improves cognitive functioning among individuals at ultra-high risk for psychosis. METHOD: Data (N = 225) from an international, multi-site, randomised controlled trial (NEURAPRO) were analysed. Participants were given omega-3 supplementation (eicosapentaenoic acid and docosahexaenoic acid) or placebo over 6 months. Cognitive functioning was assessed with the Brief Assessment of Cognition in Schizophrenia (BACS). Mixed two-way analyses of variance were computed to compare the change in cognitive performance between omega-3 supplementation and placebo over 6 months. An additional biomarker analysis explored whether change in erythrocyte n-3 PUFA levels predicted change in cognitive performance. RESULTS: The placebo group showed a modest greater improvement over time than the omega-3 supplementation group for motor speed (ηp_{p}2^{2} = 0.09) and BACS composite score (ηp_{p}2^{2} = 0.21). After repeating the analyses without individuals who transitioned, motor speed was no longer significant (ηp_{p}2^{2} = 0.02), but the composite score remained significant (ηp_{p}2^{2} = 0.02). Change in erythrocyte n-3 PUFA levels did not predict change in cognitive performance over 6 months. CONCLUSIONS: We found no evidence to support the use of omega-3 supplementation to improve cognitive functioning in ultra-high risk individuals. The biomarker analysis suggests that this finding is unlikely to be attributed to poor adherence or consumption of non-trial n-3 PUFAs

    Evidence that complement and coagulation proteins are mediating the clinical response to omega-3 fatty acids: A mass spectrometry-based investigation in subjects at clinical high-risk for psychosis

    Full text link
    Preliminary evidence indicates beneficial effects of omega-3 polyunsaturated fatty acids (PUFAs) in early psychosis. The present study investigates the molecular mechanism of omega-3 PUFA-associated therapeutic effects in clinical high-risk (CHR) participants. Plasma samples of 126 CHR psychosis participants at baseline and 6-months follow-up were included. Plasma protein levels were quantified using mass spectrometry and erythrocyte omega-3 PUFA levels were quantified using gas chromatography. We examined the relationship between change in polyunsaturated PUFAs (between baseline and 6-month follow-up) and follow-up plasma proteins. Using mediation analysis, we investigated whether plasma proteins mediated the relationship between change in omega-3 PUFAs and clinical outcomes. A 6-months change in omega-3 PUFAs was associated with 24 plasma proteins at follow-up. Pathway analysis revealed the complement and coagulation pathway as the main biological pathway to be associated with change in omega-3 PUFAs. Moreover, complement and coagulation pathway proteins significantly mediated the relationship between change in omega-3 PUFAs and clinical outcome at follow-up. The inflammatory protein complement C5 and protein S100A9 negatively mediated the relationship between change in omega-3 PUFAs and positive symptom severity, while C5 positively mediated the relationship between change in omega-3 and functional outcome. The relationship between change in omega-3 PUFAs and cognition was positively mediated through coagulation factor V and complement protein C1QB. Our findings provide evidence for a longitudinal association of omega-3 PUFAs with complement and coagulation protein changes in the blood. Further, the results suggest that an increase in omega-3 PUFAs decreases symptom severity and improves cognition in the CHR state through modulating effects of complement and coagulation proteins

    Hippocampus abnormalities in at risk mental states for psychosis? A cross-sectional high resolution region of interest magnetic resonance imaging study

    Get PDF
    Background: Hippocampal volume (HV) reduction is well documented in schizophrenia. However, it is still unclear whether this change is a pre-existing vulnerability factor, a sign of disease progression, a consequence of environmental factors, such as drug use, antipsychotic medication, or malnutrition. The timing of HV changes is not well established, but a lack of macrostructural hippocampal brain abnormalities before disease onset would rather support a neuroprogressive illness model. Aim: To investigate the timing of HV changes in emerging psychosis. Methods: A cross-sectional MRI study of manually traced HVs in 37 individuals with an At Risk Mental State (ARMS) for psychosis, 23 individuals with First-Episode Psychosis (FEP), and 22 Healthy Controls (HC) was performed. We compared left and right HVs corrected for whole brain volume across groups using analysis of covariance (ANCOVA) with gender as a covariate. Sixteen of 37 ARMS individuals developed a psychotic disorder during follow up (ARMS-T). The mean duration of follow up in ARMS was 25.1 months. Results: The overall ANCOVA model comparing left HVs across FEP, ARMS and HC indicated a significant general group effect (p < .05) with largest volumes in ARMS and smallest in FEP. ARMS-T subjects had significantly larger left HVs compared to FE but no HV differences compared to HC (p < 0.05). Over all groups, we found an asymmetry between the left and right mean HVs and a strong effect of sex. Discussion: The present study suggests that macrostructural hippocampal abnormalities probably occur in the context of the first psychotic breakdown

    An open label pilot trial of low‐dose lithium for young people at ultra‐high risk for psychosis

    Get PDF
    Aim: Lithium, even at low doses, appears to offer neuroprotection against a wide variety of insults. In this controlled pilot, we examined the safety (i.e., side‐effect profile) of lithium in a sample of young people identified at ultra‐high risk (UHR) for psychosis. The secondary aim was to explore whether lithium provided a signal of clinical efficacy in reducing transition to psychosis compared with treatment as usual (TAU). Methods: Young people attending the PACE clinic at Orygen, Melbourne, were prescribed a fixed dose (450 mg) of lithium (n = 25) or received TAU (n = 78). The primary outcome examined side‐effects, with transition to psychosis, functioning and measures of psychopathology assessed as secondary outcomes. Results: Participants in both groups were functionally compromised (lithium group GAF = 56.6; monitoring group GAF = 56.9). Side‐effect assessment indicated that lithium was well‐tolerated. 64% (n = 16) of participants in the lithium group were lithium‐adherent to week 12. Few cases transitioned to psychosis across the study period; lithium group 4% (n = 1); monitoring group 7.7% (n = 6). There was no difference in time to transition to psychosis between the groups. No group differences were observed in other functioning and symptom domains, although all outcomes improved over time. Conclusions: With a side‐effect profile either comparable to, or better than UHR antipsychotic trials, lithium might be explored for further research with UHR young people. A definitive larger trial is needed to determine the efficacy of lithium in this cohort

    Iron status in Swiss adolescents with paediatric major depressive disorder and healthy controls: a matched case–control study

    Get PDF
    Purpose: Depression is associated with low-grade systemic inflammation and impaired intestinal function, both of which may reduce dietary iron absorption. Low iron status has been associated with depression in adults and adolescents. In Swiss adolescents, we determined the associations between paediatric major depressive disorder (pMDD), inflammation, intestinal permeability and iron status. Methods: This is a matched case-control study in 95 adolescents with diagnosed pMDD and 95 healthy controls aged 13-17 years. We assessed depression severity using the Children's Depression Rating Scale-Revised. We measured iron status (serum ferritin (SF) and soluble transferrin receptor (sTfR)), inflammation (C-reactive protein (CRP) and alpha-1-acid-glycoprotein (AGP)), and intestinal permeability (intestinal fatty acid binding protein (I-FABP)). We assessed history of ID diagnosis and treatment with a self-reported questionnaire. Results: SF concentrations did not differ between adolescents with pMDD (median (IQR) SF: 31.2 (20.2, 57.0) μg/L) and controls (32.5 (22.6, 48.3) μg/L, p = 0.4). sTfR was lower among cases than controls (4.50 (4.00, 5.50) mg/L vs 5.20 (4.75, 6.10) mg/L, p < 0.001). CRP, AGP and I-FABP were higher among cases than controls (CRP: 0.16 (0.03, 0.43) mg/L vs 0.04 (0.02, 0.30) mg/L, p = 0.003; AGP: 0.57 (0.44, 0.70) g/L vs 0.52 (0.41, 0.67) g/L, p = 0.024); I-FABP: 307 (17, 515) pg/mL vs 232 (163, 357) pg/mL, p = 0.047). Of cases, 44% reported having a history of ID diagnosis compared to 26% among controls (p = 0.020). Finally, 28% of cases had iron treatment at/close to study inclusion compared to 14% among controls. Conclusion: Cases had significantly higher systemic inflammation and intestinal permeability than controls but did not have lower iron status. Whether this is related to the higher rate of ID diagnosis and iron treatment in adolescents with depression is uncertain

    Myeloid cell iron uptake pathways and paramagnetic rim formation in multiple sclerosis

    Get PDF
    In multiple sclerosis (MS), sustained inflammatory activity can be visualized by iron-sensitive magnetic resonance imaging (MRI) at the edges of chronic lesions. These paramagnetic rim lesions (PRLs) are associated with clinical worsening, although the cell type-specific and molecular pathways of iron uptake and metabolism are not well known. We studied two postmortem cohorts: an exploratory formalin-fixed paraffin-embedded (FFPE) tissue cohort of 18 controls and 24 MS cases and a confirmatory snap-frozen cohort of 6 controls and 14 MS cases. Besides myelin and non-heme iron imaging, the haptoglobin-hemoglobin scavenger receptor CD163, the iron-metabolizing markers HMOX1 and HAMP as well as immune-related markers P2RY12, CD68, C1QA and IL10 were visualized in myeloid cell (MC) subtypes at RNA and protein levels across different MS lesion areas. In addition, we studied PRLs in vivo in a cohort of 98 people with MS (pwMS) via iron-sensitive 3&nbsp;T MRI and haptoglobin genotyping by PCR. CSF samples were available from 38 pwMS for soluble CD163 (sCD163) protein level measurements by ELISA. In postmortem tissues, we observed that iron uptake was linked to rim-associated C1QA-expressing MC subtypes, characterized by upregulation of CD163, HMOX1, HAMP and, conversely, downregulation of P2RY12. We found that pwMS with [Formula: see text] 4 PRLs had higher sCD163 levels in the CSF than pwMS with [Formula: see text] 3 PRLs with sCD163 correlating with the number of PRLs. The number of PRLs was associated with clinical worsening but not with age, sex or haptoglobin genotype of pwMS. However, pwMS with Hp2-1/Hp2-2 haplotypes had higher clinical disability scores than pwMS with Hp1-1. In summary, we observed upregulation of the CD163-HMOX1-HAMP axis in MC subtypes at chronic active lesion rims, suggesting haptoglobin-bound hemoglobin but not transferrin-bound iron as a critical source for MC-associated iron uptake in MS. The correlation of CSF-associated sCD163 with PRL counts in MS highlights the relevance of CD163-mediated iron uptake via haptoglobin-bound hemoglobin. Also, while Hp haplotypes had no noticeable influence on PRL counts, pwMS carriers of a Hp2 allele might have a higher risk to experience clinical worsening

    Effects of omega-3 polyunsaturated fatty acid supplementation on cognitive functioning in youth at ultra-high risk for psychosis: secondary analysis of the NEURAPRO randomised controlled trial.

    Get PDF
    BACKGROUND Cognitive impairments are well-established features of psychotic disorders and are present when individuals are at ultra-high risk for psychosis. However, few interventions target cognitive functioning in this population. AIMS To investigate whether omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation improves cognitive functioning among individuals at ultra-high risk for psychosis. METHOD Data (N = 225) from an international, multi-site, randomised controlled trial (NEURAPRO) were analysed. Participants were given omega-3 supplementation (eicosapentaenoic acid and docosahexaenoic acid) or placebo over 6 months. Cognitive functioning was assessed with the Brief Assessment of Cognition in Schizophrenia (BACS). Mixed two-way analyses of variance were computed to compare the change in cognitive performance between omega-3 supplementation and placebo over 6 months. An additional biomarker analysis explored whether change in erythrocyte n-3 PUFA levels predicted change in cognitive performance. RESULTS The placebo group showed a modest greater improvement over time than the omega-3 supplementation group for motor speed (ηp2 = 0.09) and BACS composite score (ηp2 = 0.21). After repeating the analyses without individuals who transitioned, motor speed was no longer significant (ηp2 = 0.02), but the composite score remained significant (ηp2 = 0.02). Change in erythrocyte n-3 PUFA levels did not predict change in cognitive performance over 6 months. CONCLUSIONS We found no evidence to support the use of omega-3 supplementation to improve cognitive functioning in ultra-high risk individuals. The biomarker analysis suggests that this finding is unlikely to be attributed to poor adherence or consumption of non-trial n-3 PUFAs

    Evidence that complement and coagulation proteins are mediating the clinical response to omega-3 fatty acids: A mass spectrometry-based investigation in subjects at clinical high-risk for psychosis.

    Get PDF
    Preliminary evidence indicates beneficial effects of omega-3 polyunsaturated fatty acids (PUFAs) in early psychosis. The present study investigates the molecular mechanism of omega-3 PUFA-associated therapeutic effects in clinical high-risk (CHR) participants. Plasma samples of 126 CHR psychosis participants at baseline and 6-months follow-up were included. Plasma protein levels were quantified using mass spectrometry and erythrocyte omega-3 PUFA levels were quantified using gas chromatography. We examined the relationship between change in polyunsaturated PUFAs (between baseline and 6-month follow-up) and follow-up plasma proteins. Using mediation analysis, we investigated whether plasma proteins mediated the relationship between change in omega-3 PUFAs and clinical outcomes. A 6-months change in omega-3 PUFAs was associated with 24 plasma proteins at follow-up. Pathway analysis revealed the complement and coagulation pathway as the main biological pathway to be associated with change in omega-3 PUFAs. Moreover, complement and coagulation pathway proteins significantly mediated the relationship between change in omega-3 PUFAs and clinical outcome at follow-up. The inflammatory protein complement C5 and protein S100A9 negatively mediated the relationship between change in omega-3 PUFAs and positive symptom severity, while C5 positively mediated the relationship between change in omega-3 and functional outcome. The relationship between change in omega-3 PUFAs and cognition was positively mediated through coagulation factor V and complement protein C1QB. Our findings provide evidence for a longitudinal association of omega-3 PUFAs with complement and coagulation protein changes in the blood. Further, the results suggest that an increase in omega-3 PUFAs decreases symptom severity and improves cognition in the CHR state through modulating effects of complement and coagulation proteins

    Beyond the Exome: What’s Next in Diagnostic Testing for Mendelian Conditions

    Get PDF
    Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a suspected Mendelian condition lack a precise molecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors, including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, complex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests, such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome mapping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting, and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior evaluation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic disorders

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore