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Emmanuèle C. Délot,8,10,11 Deepti Jain,12 Alba Sanchis-Juan,1,6 Genomics Research to Elucidate the
Genetics of Rare Diseases (GREGoR) Consortium, Lea M. Starita,13,14 Michael Talkowski,1,6,15,16

Stephen B. Montgomery,17,18,19 Michael J. Bamshad,13,14,20 Jessica X. Chong,13,20 Matthew T. Wheeler,4

Seth I. Berger,21 Anne O’Donnell-Luria,1,2,6 Fritz J. Sedlazeck,5,22 and Danny E. Miller13,20,23,*

Summary

Despite advances in clinical genetic testing, including the introduction of exome sequencing (ES), more than 50% of individuals with a

suspectedMendelian condition lack a precisemolecular diagnosis. Clinical evaluation is increasingly undertaken by specialists outside of

clinical genetics, often occurring in a tiered fashion and typically ending after ES. The current diagnostic rate reflects multiple factors,

including technical limitations, incomplete understanding of variant pathogenicity, missing genotype-phenotype associations, com-

plex gene-environment interactions, and reporting differences between clinical labs. Maintaining a clear understanding of the rapidly

evolving landscape of diagnostic tests beyond ES, and their limitations, presents a challenge for non-genetics professionals. Newer tests,

such as short-read genome or RNA sequencing, can be challenging to order, and emerging technologies, such as optical genome map-

ping and long-read DNA sequencing, are not available clinically. Furthermore, there is no clear guidance on the next best steps after

inconclusive evaluation. Here, we review why a clinical genetic evaluation may be negative, discuss questions to be asked in this setting,

and provide a framework for further investigation, including the advantages and disadvantages of new approaches that are nascent in

the clinical sphere. We present a guide for the next best steps after inconclusive molecular testing based upon phenotype and prior eval-

uation, including when to consider referral to research consortia focused on elucidating the underlying cause of rare unsolved genetic

disorders.

Introduction

The evaluation of an individual with a suspected Mende-

lian genetic condition begins with a careful physical exam-

ination, review of family history, and evaluation of exist-

ing laboratory data. Together, this information helps the

treating clinician decide whether an individual would

benefit from genetic testing and whether to order focused

or broad testing. Broad approaches to genetic testing, such

as exome sequencing (ES), have benefited from access to

large collections of control data (gnomAD1) and catalogs

of pathogenic variation (e.g., ClinVar2), investment in

infrastructure to support clinical genetic services, and

changes in payor policies in the United States. Key ad-

vances such as the release of the first draft of the human

genome,3,4 the use of microarray to identify large deletions

or duplications of DNA,5 and the development of ES to

identify pathogenic variants at the nucleotide level6,7 serve

as milestones in the history of genomic medicine. These

advances have driven the current era of Mendelian disease

diagnostics in which genetic testing can define genetically

heterogeneous syndromes that are indistinguishable

by clinical findings alone and provide a precise diagnosis.

Benefits to identifying the precise genetic diagnosis

include opportunities for disease-targeted surveillance

or therapy,8–10 more accurate genetic counseling about
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Table 1. Advantages, limitations, and use cases of different types of genetic testing technologies

Advantages Limitations Examples of when to consider use

Commonly used in clinical genetics

Karyotype

d inexpensive

d rapid TAT

d detection of mosaic events

d detection of balanced rearrangements

difficult to detect by sequencing methods

d difficult to identify modest or small SVs

such as deletions, duplications, or inver-

sions

d cannot detect SNVs or indels

d recurrent pregnancy loss

d when a translocation is suspected (e.g.,

multiple deletions/duplications found on

microarray)

d to resolve discrepancies between prenatal

testing (e.g., NIPT) and phenotype (e.g.,

by US) or atypical genitalia at birth

d suspected aneuploidy or mosaicism (e.g.,

compare affected and unaffected skin)

Microarray

d inexpensive

d rapid TAT

d identify regions of homozygosity or IBD

d may not identify small deletions or dupli-

cations

d unable to identify inversions or translo-

cations

d multiple assays available—not all tests are

equivalent

d developmental delay or intellectual

disability

d multiple congenital anomalies

d suspected sex chromosome aneuploidy

Gene panel or targeted gene sequencing

d likely to have fewer incidental findings

d may capture regulatory or intronic regions

not covered by ES

d may cover difficult-to-sequence or com-

plex regions not covered by ES

d may include repeat expansions using

orthogonal technologies

d reporting criteria may return more VUSs in

target genes

d often singleton only, thus may require

additional steps to confirm inheritance

d may not include genes recently associated

with phenotype(s)

d CNV/SV analysis may depend on lab offer-

ing the test

d gene panels offered vary depending on lab

d high suspicion for a specific phenotype or

Mendelian condition

d after negative ES if specific noncoding or

intronic variants are suspected

d suspicion for a Mendelian condition not

well captured by short read technology

ES

d broad evaluation of most protein-coding

genes

d data can undergo reanalysis

d may include CNV/SV analysis

d may detect mosaic variants

d may not include regulatory or intronic re-

gions that are known to be associated with

a specific phenotype

d sensitivity for CNVs including one or few

exons is poor

d variant reporting based on lab’s under-

standing of provided phenotype

d multiple types of exomes are available,

meaning not all tests are equivalent

d negative prior testing

d phenotype that does not fit a well-

described syndrome

d need for broad and rapid evaluation (e.g.

in the intensive care unit)

d panel testing unavailable for phenotype

Emerging use in clinical genetics

Methylation analysis

d targeted or genome-wide evaluation

d may detect mosaic changes associated

with phenotype

d additional conditions can be evaluated on

a research basis

d limited number of conditions can be

evaluated clinically

d cannot identify causative DNA variant

d signature may vary by condition and be

affected by age or acute illness

d clarification of VUS identified by prior

testing

d individuals with DD or ID after nondiag-

nostic ES

d multiple congenital anomalies after non-

diagnostic panel or ES

d clinical suspicion of epigenetic disorder

with negative prior evaluation

OGM

d high sensitivity for CNVs, SVs, and rear-

rangements

d inability to detect SNVs, indels d suspicion for complex chromosomal event

missed by prior testing

(Continued on next page)
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natural history and recurrence risks for a larger number of

conditions,11,12 and potential for approved or investiga-

tional therapies, such as N-of-1 approaches.13

As new technologies have enabled greater access to inex-

pensive, sequencing-based genetic tests, best practice

guidelines have been modified to encourage appropriate

use and emphasize their strengths. For example, demon-

stration that the use of chromosomal microarray to detect

copy-number variants (CNVs) had clinical utility beyond

the characterization of cancer14 led to guidelines support-

ing its use to evaluate individuals with suspected genetic

syndromes.15 Subsequently, in 2010, the American College

ofMedical Genetics (ACMG)modified these guidelines and

recommended the use ofmicroarray as a first-tier test for in-

dividuals with developmental delay or congenital anoma-

lies16 and, in 2021, again changed these guidelines to reflect

the value of using ES as a first- or second-tier test to make a

precise genetic diagnosis in persons with congenital anom-

alies, developmental delay, or intellectual disability.17

Current approaches to identify a precise molecular diag-

nosis in an individual suspected to have a genetic condi-

tion might include CNV analysis by microarray to identify

large deletions or duplications, a phenotype-informed

gene panel, or ES (Table 1). However, 50%–60% of individ-

uals with a suspected Mendelian condition remain undiag-

nosed after clinically available comprehensive genetic

testing, including ES, although it should be noted that

there is substantial variability in the diagnostic rate de-

pending on the phenotype.18–21 In the critical care setting,

such as the neonatal or pediatric ICU, the diagnostic

approach may be somewhat different: as time to a precise

genetic diagnosis is often of greater utility, broad and

comprehensive testing, such as ES, has shown clinical

value, with rapid turnaround times favored.22–24 However,

despite the use of rapid ES or genome sequencing (GS)

early in the diagnostic evaluation, the diagnostic rates in

cohorts of critically ill infants range from 20% to 60%

depending on ascertainment criteria, and some stratifica-

tion schemes result in higher diagnostic rates than

others.21,24–27

Several factors contribute to the varied diagnostic rate in

individuals with an underlying Mendelian condition who

undergo clinical testing. First, the genetic basis of many

Mendelian conditions remains unknown. Second, for con-

ditions for which the underlying gene(s) is known, the test

orderedmight not interrogate the appropriate gene(s) (e.g.,

Table 1. Continued

Advantages Limitations Examples of when to consider use

srGS

d sampling entire genome

d able to identify protein-coding, intronic,

and regulatory variants

d higher sensitivity for small CNV/SV

identification than ES

d able to identify SV breakpoints

d intronic and regulatory regions may not be

analyzed or interpreted depending on the

lab performing the test

d lower depth of coverage limits detection of

mosaic variants and variants in difficult to

sequence regions

d higher likelihood of uncertain findings and

potential increase in secondary findings

d after negative ES

d as alternative to ES when need for broad

and rapid evaluation

d emerging as initial test in suspected

Mendelian conditions

RNA sequencing

d can be used to adjudicate VUSs that are

predicted to affect splicing or expression

d identify changes that impact splicing or

expression but that are difficult to predict

computationally

d identify changes specific to tissue of in-

terest

d identify global changes in gene expression

or splicing

d require large number of controls

d tissue of interest may not be clinically

accessible

d methods for interpretation and reporting

not standardized

d DNA candidate variant suggests impact on

splicing or expression

d identify variant in second allele in a

recessive disease where genomic

sequencing returned only one pathogenic

variant

d suspicion of phenotype with global effect

on splicing or expression

Research use

LRS (targeted or whole genome)

d unbiased sampling of entire genome (lrGS)

d SV identification and interpretation is

better than srGS

d DNA methylation information is generated

concomitant with sequence information

d characterization of repetitive regions of

the genome without targeted capture or

computational tools

d potentially more expensive than other

modalities

d analysis may require substantial compute

and network resources

d lack of publicly available population-level

data for filtering and interpretation

d after nondiagnostic ES/srGS and/or RNA-

seq

d missing variant cases

d phenotype suggests repeat expansion

mechanism

CNV, copy-number variant; SV, structural variant; SNV, single-nucleotide variant; VUS, variant of unknown significance; ES, exome sequencing; LRS, long-read
sequencing; OGM, optical genomemapping; TAT, turnaround time; srGS, short-read genome sequencing; lrGS, long-read genome sequencing; CDG, congenital
disorder of glycosylation; IBD, identity by descent; NIPT, noninvasive prenatal testing; US, ultrasound; DD, developmental delay; ID, intellectual disability.
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single-gene or multi-gene panels), variant type(s) (e.g.,

short tandem repeat expansion), or epigenetic signature(s)

(e.g., methylation status). Third, technical limitations may

make it difficult to identify a pathogenic variant (e.g., CNV

detection from ES). Fourth, there may not be sufficient in-

formation to interpret the pathogenicity of a variant (e.g.,

variants of unknown significance [VUSs]). Compounding

the latter issue is that the interpretation of variants by diag-

nostic laboratories can vary substantially because of differ-

ences in how evidence of pathogenicity of a variant is

weighted,28 although standardization of classification

and data sharing efforts should mitigate this effect.29–31

Fifth, incomplete penetrance and challenges associated

with distinguishing whether a phenotype is due to large-

effect alleles or the result of complex inheritance patterns

(e.g., digenic or oligogenic) makes it difficult to identify

the molecular etiology of a phenotype. Finally, the diag-

nostic rate has historically been dependent on the depth

of phenotypic information available at variant

adjudication.32 While overall guidelines for systematic

phenotyping do not exist, proposals to use human pheno-

type ontology terms and phenopackets would provide a

standard for phenotype sharing across laboratories, clini-

cians, and researchers.33,34 It should also be recognized

that nongenetic explanations, such as infection or toxic

exposure, may also be identified in the process of diag-

nostic evaluation.

Limited options for genome-wide testing exist for indi-

viduals who remain without a precise genetic diagnosis af-

ter current clinical testing options have been exhausted.

GS is increasingly clinically available, and newer technolo-

gies, such as RNA sequencing (RNA-seq), optical genome

mapping (OGM), and long-read GS (lrGS), are emerging.

However, the value of these technologies over current

testing strategies has yet to be determined across multiple

clinical contexts and settings. Nevertheless, alone or in

various combinations, these technologiesmay offer advan-

tages that complement or perhaps replace conventional

genome-wide testing strategies. This begs the question,

what is the next best step in evaluating an individual

with a suspected Mendelian condition after negative

clinical genetic testing? Herein, we discuss testing options

when a precise genetic diagnosis cannot be made via

conventional testing, provide examples of how emerging

technologies could be used to make a precise genetic diag-

nosis, and provide guidance to clinicians about the use of

these technologies.

Exome sequencing and reanalysis

The use of clinical ES has substantially increased diagnostic

rates across a broad range of categorical phenotypes and for

Mendelian conditions in general, ranging from 25% to

40% depending on the phenotype and setting,20,35,36

and higher diagnostic rates were reported in populations

in which consanguinity is common.37 Thus, while the

diagnostic yield is relatively high, on aggregate, more

than 50% of individuals tested remain undiagnosed after

clinical ES.38–40 Reanalysis of existing ES data may uncover

a pathogenic variant years after the data were generated

(Table 2) as a result of new gene discovery for Mendelian

conditions, resolution of VUSs as pathogenic, and im-

provements in bioinformatic variant-calling pipelines.

Yields from reanalysis of ES data vary widely depending

on the age of the data: those generated 5–10 years ago

have a higher yield because of the number of novel disease

genes described in the intervening time period and the

types of analyses applied.41 A recent systematic review

identified an increased diagnostic yield of approximately

15% across 27 studies and suggested reanalysis 18 months

after the original analysis to optimize yield.42

Further research is needed in this area to determine best

practices.

Diagnoses identified via ES reanalysis can be divided into

two broad categories: variants missed by analysis pipelines

and variants that were previously identified but not

considered diagnostic. The first category often includes

variants for which current variant-calling pipelines have

limited technical sensitivity and/or reliability, such as in-

dels, noncoding variants in regions flanking the coding

segments targeted by the exome sequencing capture

kit,50 or CNVs,41,51 whereas the second category takes

into account both laboratory and clinician-focused variant

reinterpretation. Indeed, many of the diagnoses made by

reanalysis of ES data involve reinterpretation of previously

detected variants with new evidence supporting their

pathogenicity.41,51–55 Such variants may be in a gene

whose function was unknown at the time of original anal-

ysis or that had limited evidence to support the link be-

tween the gene and the condition. Criteria for reporting

variants in genes not currently associated with Mendelian

disease can vary between clinical laboratories, and there-

fore, these diagnoses are often found during research rean-

alysis.43 However, diagnoses found on exome reanalysis

may also be in known disease genes not previously

thought to explain the phenotype, where the clinical

interpretation of a variant has changed due to novel data

such as additional clinical information, new variant inher-

itance information, segregation data from other affected

family members, newly published case reports, or an

expansion of the phenotype associated with a gene.53 In

addition, reevaluation of the presenting phenotype often

aids in reprioritization of variants that were previously

identified and may lead to a new clinical diagnosis. Thus,

clinician input is often critical to making the diagnosis56

and can also lead to detection of a second or additional

genetic diagnosis, especially in case reports with clinical

findings not fully explained by a single Mendelian

condition.41,57

Exome reanalysis is now formally recommended by the

ACMG58 and may be requested by the treating clinician,

undertaken in the research setting,43 or conducted by a

clinical laboratory at regular intervals.59 The ACMG
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recommends that clinical laboratories prioritize reanalysis

‘‘to maximize the potential clinical impact’’ of ES, such as

for variants initially classified as a VUS and for reevaluating

variants when relevant resources become newly

available (e.g., population control genetic databases, pub-

lished gene-disease relationships, or variant assessment

methods).58 However, specific policies regarding reanaly-

sis, including frequency and communicating results to cli-

nicians and affected individuals and their families, are left

to the discretion of individual laboratories. If exome rean-

alysis is not revealing, then pooling of exome-negative

affected individuals with similar phenotypes can be used

in gene discovery efforts. Reanalysis by an independent

group, often via research, may also be helpful to identify

variants that had been passed over by the team performing

the initial analysis.

Several limitations of ES should be considered when

deciding whether an individual would benefit from reanal-

ysis or whether other testing should be considered instead

(Table 3). Reanalysis of ES data may not identify mosaic

variants underlying a condition, as they are difficult to

detect without deeper coverage or sequencing an affected

tissue. For example, some lymphatic malformations are

due to variants that have allele frequencies less than

1%.60 In addition, known pathogenic variants, such as

intronic or promoter variants, which fall outside the pro-

tein-coding regions, may be missed on ES but identified

by gene panels that are deliberately designed to capture re-

gions containing these variants.

Short-read genome sequencing

Compared to ES, short-read GS (srGS) provides a more un-

biased sampling of the entire genome, providing a plat-

form that can identify a spectrum of clinically relevant

variation and enable the analysis of coding and noncoding

variants. This allows for the detection of coding variants in

Table 2. Examples of cases solved by specific technologies after prior testing was negative

Category Example

Diagnosis made by reanalysis
of exome sequencing data

A 3-year-old boy was noted to have unique facial features, developmental delay, anxiety, gastrointestinal
dysmotility, and poor growth. Although a Mendelian condition was suspected, clinical ES at age 4 was
nondiagnostic. Reanalysis of the ES data identified a pathogenic variant in PPM1D (MIM: 605100), consistent
with a diagnosis of Jansen de Vries syndrome (MIM: 617450). This disease-gene association had beenmade 2 years
after the clinical exome was sent and 1 year prior to the reanalysis.43

srGS detects variants
missed by ES

Shortly after birth, a neonate was noted to have features consistent with early-onset Marfan syndrome (MIM:
154700). Sequencing and deletion-duplication analysis (via multiplex ligation-dependent probe amplification,
MLPA) of FBN1 (MIM: 134797) did not reveal any pathogenic variants. Subsequent trio-exome sequencing with
CNV analysis was similarly nondiagnostic. srGS identified a heterozygous 385-base pair deletion in FBN1
involving the early-onset Marfan syndrome critical region (exons 24–32). This small SV was not identified on
CNV analysis of ES data because of quality filtering.44

Targeted LRS (T-LRS) reveals
a deletion not identified by
clinical testing

An individual suspected to have Hermansky-Pudlak syndrome (MIM: 203300) on the basis of clinical features had
a negative clinical microarray followed by trio-exome sequencing that identified a single paternally inherited
pathogenic variant in HPS1 (MIM: 604982), the gene associated with this recessive disease. T-LRS on the ONT
platform identified the paternally inherited pathogenic variant as well as a 1,900-bp frameshifting deletion not
identified by either microarray or exome.45 This deletion was clinically validated with an exon-level array.

Simultaneous evaluation
of repeat length and
methylation with LRS

In an individual with Baratela-Scott syndrome (MIM: 615777) known to have an expansion in the promoter of
XYLT1 (MIM: 608124) that leads to silencing of the gene, T-LRS simultaneously detected expansion of the repeat
and associated CpG hypermethylation in the proband as well as low-level silencing of the premutation allele in
the mother.45

Simultaneous identification
of a deletion and inversion
with OGM

In a young child with epileptic encephalopathy that remained undiagnosed after chromosome microarray, an
epilepsy panel that included an exon-level array for CDKL5 (MIM: 300203), ES, and srGS, Cope and colleagues
used OGM to identify a mosaic deletion and inversion in CDKL5 and to estimate that the deletion and inversion
were present in approximately 25% of DNA molecules assayed.46 The result was clinically confirmed with short-
read mate-pair sequencing.

RNA-seq detects a pathogenic
splice variant not identified
by ES

Hong and colleagues used RNA-seq to evaluate a cohort of individuals with neuromuscular disease and
nondiagnostic clinical testing.47 In an individual with recurrent rhabdomyolysis and nondiagnostic ES, RNA-seq
detected an exon-skipping event in LPIN1 (MIM: 605518). The causative variant was found to be a synonymous
variant in the last exon of the gene that was not predicted to be splice-altering by computational tools. This
highlights the challenge with interpreting rare synonymous variants whose impact is not predicted with standard
analysis tools.

Using epigenetic signatures
to diagnose rare Mendelian
conditions

In a study of 207 individuals referred for clinical genome-wide DNA methylation testing, epigenetic signatures
were used to associate 57 cases with one of 50 previously known conditions. The majority of individuals (48/57)
carried a VUS in a gene associated with the disease represented by the epigenetic signature.48

Multiomics approach aids
variant interpretation

Deletions and duplications have been reported to cause lethal perinatal mitochondrial disease at the ATAD3
(MIM: 618810) locus, but they are difficult to analyze given the repetitive nature of the region. In individuals with
suspected mitochondrial disease, Frazier and colleagues used a combination of ES, srGS, lrGS, and quantitative
proteomics to evaluate 17 individuals from 16 families and identified six different de novo duplications in the
ATAD3 locus associated with the phenotype in these individuals.49

CNV, copy-number variant; SV, structural variant; VUS, variant of unknown significance; ES, exome sequencing; LRS, long-read sequencing; T-LRS, targeted long-
read sequencing; OGM, optical genome mapping; srGS, short-read genome sequencing; lrGS, long-read genome sequencing.
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regions poorly covered by ES and improves detection of

structural variants (SVs) including CNVs, copy-neutral

events such as inversions, and short tandem repeats

(STRs). While srGS is increasingly being offered on a clin-

ical basis, the interpretation of variants beyond those

that can be identified by ES is limited. This is due to chal-

lenges in predicting the pathogenicity of noncoding vari-

ants, such as those suspected to affect splicing or gene

expression that are less often reported in variant data-

bases.62 Similarly, interpreting the pathogenicity of SVs is

challenging because of limited data on their population

frequencies63 and on the predicted phenotype from novel

SVs that impact multiple genes. Thus, despite the ability to

capture a wider spectrum of pathogenic variation, varying

analytical and reporting practices by clinical labs temper

the current added utility of srGS. Although best practices

for variant reporting have been developed,64 identification

of noncoding variants as well as SVs by lrGS may lead to

greater discrepancy in reporting across clinical laboratories

than is seen with ES.

Incremental diagnostic yields for srGS vary across studies

and can depend on factors such as the characteristics of the

cohort selected, age and quality of prior sequencing,

unique aspects of the phenotype being studied, or the

analytical tools used to call variants. Several studies have

demonstrated a modest increase in diagnostic yield (5%–

20%) for srGS when performed after nondiagnostic ES

(Table 2).65–67 For example, in a cohort of individuals

with Alagille syndrome and previously nondiagnostic ES,

srGS successfully identified pathogenic variants, including

SVs and a noncoding single-nucleotide variant (SNV).44,68

We anticipate that adoption of comprehensive variant-

calling pipelines by clinical laboratories combined with

expanded variant databases, especially for noncoding vari-

ation, is likely to improve diagnostic utility.

Limitations of srGS include increased data generation

costs, higher analytical burden, and a lower likelihood of

identifying mosaic variants when compared to ES because

of lower average coverage. In addition, the availability of

clinical srGS is more limited because of payor restrictions.

However, because of competition between sequencing

manufacturers as well as improvements in informatics,

data processing, and sequencing chemistries, srGS is

becoming increasingly more cost effective. In fact, it may

soon be more cost effective than ES because of the ability

to detect multiple types of variants with a single test.69–71

As with clinical ES, we anticipate that as more studies

show improved diagnostic yield and simplified testing,

guidelines may shift toward recommending srGS as a

first-tier test, and the majority of payors will follow closely

behind.

Targeted and whole-genome long-read

sequencing

Long-read sequencing (LRS) technology produces individ-

ual DNA or RNA reads ranging from 1 kb to several mega-

bases in length.72 There are two commercial long-read

sequencing technologies currently available, one offered

by Pacific Biosciences (PacBio) and the other by Oxford

Nanopore Technologies (ONT).73 PacBio sequencing works

by monitoring a polymerase as it replicates a circular piece

of DNA.74 While the technology is error-prone at the base

level, high-quality reads can be produced by combining

multiple read segments from the same DNA molecule

Table 3. Considerations and next steps after nondiagnostic clinical exome sequencing

Type of variant Action that can be taken

Small CNV not detectable by ES Exon-level array may identify small CNVs. Alternatively, srGS or lrGS may detect small CNVs.

Regulatory variant located in
a region not captured by ES

Depending on the specificity of the phenotype, consider more-targeted gene testing that includes sequencing
of regulatory regions or srGS; consider RNA-seq or epigenetic signature testing.

Deep intronic variant that
affects splicing

Consider a panel that may include known intronic variants. Either srGS, lrGS, or RNA-seq can also be used to
identify or confirm the variant.

Variant in a gene not previously
associated with the phenotype,
not assessed and/or reported
because of laboratory analysis
and/or reporting criteria

Consider submission to Matchmaker exchange61 and referral to research group or consortia who can conduct
a broader, gene discovery-oriented analysis (e.g., flag putatively deleterious variants in genes not previously
associated with human disease and identify additional cases who harbor variants in this candidate gene).

Structural variant not detected
by ES (e.g., a complex
rearrangement or inversion)

OGM, srGS, or lrGS can be used to identify and clarify SVs missed by exome sequencing.

Repeat expansion Depending on the specificity of the phenotype, consider a disease-targeted panel/gene testing or srGS or lrGS
with repeat expansion detection.

Variants that cannot
be phased

If parental samples are not available or a variant is de novo, then clinical srGS may phase if variants are close
enough together. If not, either mate-pair sequencing or lrGS can be used.

Mosaic variants Discuss reporting criteria and technical thresholds for variant calling with laboratory. If there is strong clinical
suspicion for a specific genetic disease, consider targeted testing with higher sequencing depth. Consider
high-depth exome sequencing; multiple-tissue/multiple-sample sequencing.

ES, exome sequencing; CNV, copy-number variant; SV, structural variant; OGM, optical genome mapping; srGS, short-read genome sequencing; lrGS, long-read
genome sequencing.
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into a single, high-quality consensus read, which limits the

average read length to approximately 15–20 kbp. ONT

sequencing works by measuring changes in current as a

single-stranded DNA or RNA molecule passes through a

protein nanopore. This produces reads with a higher per-

base error rate than PacBio HiFi reads, but they can be

significantly longer73,75 and more rapidly analyzed

because signal may be decoded while sequencing.76,77

Detection of CpG methylation is possible with both tech-

nologies when original DNAmolecules are sequenced with

no additional modifications during library prepara-

tion.78,79 In comparison to short reads, long reads map

better to repetitive regions of the genome, simplify identi-

fication of pathogenic SVs such as repeat expansions, and

allow for phasing of variants.80,81

To reduce costs and simplify analysis, targeted LRS (T-

LRS) of high-priority regions with either a Cas9-based

approach on both platforms82,83 or adaptive sampling on

the ONT platform45,84,85 has been shown to be effective

in identifying missing variants in specific genes of interest

(Table 2). The benefit of T-LRS in clinical testing has

become less certain as the cost of whole-genome LRS

(lrGS) falls. This is because preparing samples for targeted

sequencing can require additional time, such as for the

design of guide RNAs for Cas9-based approaches, shearing

of DNA for adaptive sampling, or the need for multiple

sequencing runs if coverage is insufficient.

T-LRS requires identification of a candidate region prior

to use. For individuals in which no target region has

been identified, lrGS represents an agnostic approach to

identifying novel genes or loci of interest but with higher

cost and increased computational and interpretation

burden above even srGS. Despite the challenges with

data management, storage, and analysis, both T-LRS and

lrGS are expected to have advantages in calling SNVs, in-

dels, and SVs over ES or srGS.72,80 This is because it is easier

to reliably map long reads to complex regions of the

genome and to then call variants within these regions;

however, variant callers for lrGS are less mature than callers

for ES/srGS.81 LRS allows more SV breakpoints to be esti-

mated with higher resolution and better identification of

clinically relevant repeat expansions.45,67,86 Several studies

have shown that improvements in variant detection when

using long-read technology can facilitate identification of

genotype-phenotype associations in genomic regions

that could not be analyzed with short reads.67,87,88 Limited

population-level data exist for SVs, SNVs, and indels in re-

gions refractory to analysis with short reads. Ongoing ef-

forts such as those from the All of Us project and lrGS

sequencing of samples from the 1000 Genomes Project

will address this limitation but will take several years to

complete. In addition, as with srGS data, there are few tools

for interpretation of noncoding SNVs, indels, and SVs.

Additional clinically relevant advantages of LRS over

short-read sequencing exist. For example, both T-LRS and

lrGS have been used for phasing of de novo variants or

when parental samples were not available.45,67 Because

original DNA molecules are often sequenced, LRS data can

be used to simultaneously evaluate both sequence and

methylation status with a single data source (Table 2).78,89

Unfortunately, similar to challenges with the large number

of SVs identified by LRS, variation associated with methyl-

ation status in the population is unknown, leading to a

need for databases containing tissue-, age-, and gender-

matched control individuals for filtering and analysis.

When to use LRS to evaluate a challenging clinical case

remains unclear. Frequently changing pipelines and

limited reference datasets (especially from diverse popula-

tions) for filtering and prioritizing of variants identified

by LRS creates challenges.87,90–92 Further benchmarking ef-

forts are also needed to identify sequencing artifacts and to

standardize tools before widespread clinical application.

The eventual adoption of LRS for clinical use will depend

on curation of variants identified by LRS in control popu-

lations and side-by-side comparisons of the incremental

diagnostic yield of srGS compared to lrGS in nondiagnostic

cases. While studies support increased variant detection by

lrGS in individuals without a precise genetic diagnosis via

ES45,67 and also inmedically relevant genes,88 further work

is needed to assess the clinical utility of the technology

compared to existing methods.

Optical genome mapping

Optical genomemapping (OGM) is a technique that works

by imaging fluorescent labels that have been enzymatically

introduced at canonical sequences on long, megabase-

sized, DNA molecules.93,94 The pattern of fluorescent la-

bels are compared between the sample and a reference

genome for identification of SVs. This allows for the detec-

tion of SVs that are challenging to detect with other

methods, such as CNVs smaller than 25 kb and balanced

events like inversions or translocations (Table 2).95 A direct

comparison of lrGS, srGS, and OGM on the same sample

showed that one in three deletions and three of four inser-

tions larger than 10 kb were detectable only by OGM,87 a

result that should be revisited with newer lrGS datasets

and SV-calling pipelines.

An early attempt at demonstrating clinical utility of OGM

showed 100% concordance with previously detected SVs in

Duchenne muscular dystrophy (MIM: 310200), including a

5.1-Mb inversion (which had previously required combined

PCR,MLPA, RNA-seq, and srGS to decipher), as well as deter-

minationof carrier status inmaternal samples.96 Several case

reports have further highlighted the usefulness of OGM in

identifying SVs difficult to detect with other technolo-

gies46,97–100 and in karyotyping.98 Successful application of

OGM to resolve haplotypes and size in the 3.3-kb repeat ar-

rays causative of facioscapulohumeral muscular dystrophy

(FSHD, MIM: 158900)101,102 has led to the first CLIA-

approved application of OGM (PerkinElmer/BionanoGeno-

mics EnFocus FSHD Analysis), with a goal of replacing tradi-

tional Southern blots for clinical testing.
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While OGM excels as a single technology to detect SVs,

large CNVs, and complex rearrangements, there are limita-

tions. Sequence information is not available, and resolu-

tion is limited by the spacing of fluorescent tags along

the genome and by the resolution of the imaging photo-

cell. Extraction of high-molecular-weight DNA is required

for optimal results, similar to some LRS-based approaches.

For clinical use, detecting variants with OGM is only the

first step. As seen with srGS and lrGS, determining the

clinical relevance of SVs remains a major challenge.

RNA sequencing

Though srGS and lrGS can capture a wide variety of vari-

ants, interpreting the impact of many intronic and

noncoding variants can be challenging despite the devel-

opment of advanced algorithms such as SpliceAI103 or

Genomiser,104 leading to potentially pathogenic variants’

being missed. Thus, RNA-seq may be used to identify the

gene responsible for a disease based on expression or

splicing without prior knowledge of underlying variants

(Table 2).105–108 Combined with DNA variant knowledge,

this information can be used to clarify the impact of a

candidate splice or other noncoding variant, to identify a

missing allele in a known recessive disease, or to identify

candidate genes in individuals with nondiagnostic prior

testing. RNA-seq can also identify other types of clinically

relevant variation, including variants that affect RNA sta-

bility, differences in polyadenylation, novel transcripts,

or variants in non-protein-coding genes that may not be

evaluated by standard analysis pipelines.109

Transcriptome profiles, however, vary greatly depending

on the tissue sampled and clinical status of the affected in-

dividual. Not all genes or isoforms are expressed in easily

accessible tissues, such as blood or fibroblasts, and thus

may not be interrogatable by RNA-seq. Despite these limi-

tations, RNA-seq has been used successfully to reclassify

VUSs and identify missing pathogenic variants with a diag-

nostic rate reported between 7.5% and 34% depending on

the phenotype studied and the tissue sequenced.105,110–113

In general, work has shown that more genes are expressed

in fibroblasts than fromwhite blood cells (WBCs), however

work has shown that these are less relevant for immuno-

logical phenotypes113,114 and some neurologic pheno-

types, where lymphoblastoid cell lines were sufficient.115

In certain phenotypes, the overall diagnostic rate of RNA-

seq may be similar to or better than ES. One recent study

compared the diagnostic rate of these two methods in a

cohort of individuals with neuromuscular disease and

found that RNA-seq alone of muscle tissue identified a

higher number of pathogenic variants (38.1%, 24/86)

than ES alone (34.9%, 22/96).47

Other challenges with widespread implementation of

RNA-seq exist beyond tissue specificity of expression and

isoform usage. First, detecting differences in expression

that may point to potentially causative genes requires

careful selection of control individuals because of both bio-

logical variation (e.g., age and environment) as well as

variation in experimental protocols and sequencing plat-

forms,116 which has led some to recommend the develop-

ment of in-house control sets to address the experimental

component.112 Second, allele-specific expression (ASE) at a

specific locus or across an entire chromosome, such as in

affected individuals with skewed X chromosome inactiva-

tion, has been proposed as an underlying cause of pheno-

typic variability or disease severity in rare disease and can

be identified with RNA-seq.117–119 Unfortunately, predict-

ing ASE from variant-level DNA-sequencing data alone

remains challenging116 and best practices for outlier detec-

tion are emerging, thus ASE detection currently relies on

inclusion of both RNA-seq and variant-level DNA data to

detect transcripts that detect one variant at a higher level

than another.120 Third, gene fusion events have been

identified in previously unsolved cases, but identification

requires additional analysis steps that are not usually

undertaken.121

While not yet clinically available, long-read RNA-seq of

amplicons, cDNA, or original RNAmolecules may simplify

isoform analysis and permit easier identification of fusion

transcripts.122–125 For example, one recent study used LRS

of amplicons from an individual withWerner syndrome to

determine exactly which haplotype was affected by exon

skipping, allowing the group to more closely evaluate the

other haplotype for pathogenic variants.85 Although

cDNA sequencing is available on both the PacBio and

Nanopore platforms, direct RNA-seq is currently available

only on the Nanopore platform.126,127 This method can

simultaneously assay expression, isoform structure, and

RNA modifications, which opens new possibilities in eval-

uating individuals who remain undiagnosed after exten-

sive evaluation. Several research consortia are exploring

long-read RNA-seq after nondiagnostic ES, srGS, and

short-read RNA-seq; thus we anticipate ongoing advances

in this space over time.

DNA methylation analysis

Multiple Mendelian conditions are caused by dysregula-

tion of the epigenetic machinery, with subsequent alter-

ation of DNA methylation patterns.128 These conditions

are associated with distinct DNA methylation signatures,

or ‘‘episignatures,’’ which can be used to distinguish

between different syndromes.129 Episignatures can thus

be used to support variant reclassification or to suggest a

specific Mendelian condition in individuals with previous

nondiagnostic testing (Table 2).48 For example, Aref-Eshgi

and colleagues130 applied genome-wide DNA methylation

analysis to develop a computational model to support the

diagnosis of fourteen neurodevelopmental conditions

with known episignatures, including Coffin-Siris syn-

drome and other BAFopathies (MIM: 135900, 614607,

614608, 614609, and 615866), CHARGE syndrome
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(MIM: 214800), and Kabuki syndrome (MIM: 602113 and

300128). Using this model, they were able to resolve 21

(31%) of 67 individuals who presented with ambiguous

clinical features and/or genetic findings suspicious for

one of these Mendelian conditions, including individuals

with no candidate variants found on molecular testing.

While such studies highlight the potential of DNA

methylation analysis to resolve undiagnosed affected indi-

viduals, there are important limitations. At present, DNA

methylation testing is commonly performed with periph-

eral blood samples, and available reference datasets used

to identify episignatures are also generally derived from

blood samples. As epigenetic profiles can vary substantially

between different tissues,131 results observed from blood

samples may be different with respect to their generaliz-

ability for the disease-related tissue of interest. Moreover,

there is the need for consensus analytical standards for

DNA methylation testing, including correcting for age,

sex, environmental influences, and other factors that can

impact results of DNA methylation analysis.132 In addi-

tion, existing DNA methylation array technologies have

been noted to have limited ability for detecting low-grade

genetic mosaicism (<20%)48,133 and can only identify

Mendelian conditions with previously characterized epis-

ignatures, both of which can reduce diagnostic sensitivity.

Nonetheless, DNA methylation testing has been shown to

resolve as many as 30% of individuals with features suspi-

cious for rare neurodevelopmental conditions,48 a yield

comparable to the solve rates reported for chromosomal

microarray (15%–20%) and ES (30%–40%).134 This sug-

gests that it may be worth incorporating methylation

profiling as part of the first-line diagnostic workup of indi-

viduals with specific phenotypes, such as neurodevelop-

mental disorders, suspected imprinting disorders, repeat

expansion disorders, or a VUS in a known methylation

gene. Because LRS can concurrently identify methylation

status when generating sequence data, we expect episigna-

tures to be incorporated into these analysis pipelines in the

future.

Integrating biochemical and proteomic data:

Multiomics approaches

Using a combination of data types, such as genomic,

transcriptomic, epigenetic, proteomic, metabolomic, or

biochemical data, is referred to as a multiomics

approach.135,136 While integrating the large amounts of

data that can be generated with any of these approaches

seems challenging, the overall idea is straightforward:

look for overlapping clues in the data available for variant

identification and prioritization. Many consortia studying

challenging unsolved cases have used this approach suc-

cessfully to guide reanalysis efforts. For example, within

the Undiagnosed Diseases Network (UDN) an individual

was suspected to have 3-hydroxy-3-methylglutaryl coen-

zyme A lyase deficiency (MIM: 246450) (encoded by

HMGCL [MIM: 613898]) based on urine organic acid anal-

ysis.19 Reanalysis of ES data identified a deletion in the first

exon of HMGCL and RNA-seq confirmed that HMGCL

expression was 50% that of unaffected control individuals.

Other groups have shown that enzymatic or metabolomic

assays have utility in the interpretation of VUSs identified

by panel testing.137

A multiomics approach can be especially useful in

affected individuals with suspected mitochondrial

disease given the phenotypic heterogeneity that can be

observed.138,139 Mitochondrial disease can arise from path-

ogenic changes in genes in either the nuclear DNA or the

16.5-kb mitochondrial genome (mtDNA). While patho-

genic variants in the nuclear genome are detectable by reg-

ular genomic sequencing platforms such as ES, identifying

pathogenic variants in mtDNA may require careful evalua-

tion because of tissue-specific heteroplasmy. Pathogenic

variants in mtDNA may directly impact protein-coding

genes (e.g., Leber hereditary optic neuropathy [MIM:

619382]) or tRNA genes (e.g., MELAS: mitochondrial

encephalopathy, myopathy, lactic acidosis, and stroke-

like episodes [MIM: 540000]) or cause large genomic rear-

rangements of mtDNA (e.g., Kearns-Sayre syndrome

[MIM: 530000]). Testing options for mtDNA-specific vari-

ants range from conventional technologies such as tar-

geted sequencing, Southern blotting, or array comparative

genomic hybridization to high-coverage short-read

sequencing to interrogate the entire mtDNA for SNVs/in-

dels and SVs.140 Analysis of mtDNA variations may be

combined with biochemical results, such as electron trans-

port chain assays, metabolic profiling, or proteomics, to

achieve accurate variant interpretation (Table 2).

Both targeted and global metabolomic data have been

used to either aid in the prioritization of variants identified

by ES or to suggest specific genes or pathways for evalua-

tion, although the yield of the latter has been low.141,142

For example, in a retrospective study of 170 affected indi-

viduals, untargeted metabolomics contributed toward pri-

oritization of variants from ES in 74 individuals (43.5%)

and confirmed clinical diagnosis in 21 affected individuals,

yielding a diagnostic rate of 12.3%.142 Several software

packages have been developed to aid in the integration

of metabolic data with existing data types.143–145 A major

limitation of untargeted metabolomic data is the challenge

of finding appropriate control individuals as differences in

age, diet, or medication usage can alter clinically relevant

metabolomic profiles.

Finally, proteomic analysis can provide valuable insights

into the genes or pathways that may be affected in an indi-

vidual with a suspected Mendelian condition.146 This is

especially true in affected individuals where the affected

cell or tissue can be easily collected. For example, proteome

analysis of individuals with monogenic diseases affecting

neutrophil function found that large proteome changes

were observed in only some, but not all, known conditions

and observed changes did not correlate with transcriptome

analysis, demonstrating the power of orthogonal data in
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elucidating changes in rare conditions.147 Overall, the

integration of different omics technologies that comple-

ment one another can provide key clues in individuals

that remain undiagnosed after extensive clinical testing.

The specific test ordered should be driven by the affected

individual’s phenotype and candidate variants.

Discussion

Advances in genetic testing provide opportunity and hope

for individuals who remain undiagnosed after comprehen-

sive clinical genetic evaluation.However, appropriate appli-

cation of these technologies, which may only be available

in the research setting, remains unclear. Thus, our aim is

to both provide an overview of each of these new technol-

ogies (Table 1) and to provide a list of options about what

next steps in testing exist for individuals who lack a precise

genetic diagnosis after ES (Figure 1, Table 4). Although

certain technologies are not yet clinically available, collab-

oration between clinicians and researchers is essential for

rare disease diagnosis, and familiarity with these emerging

techniques may facilitate both referral to an appropriate

research study or clinical implementation once a new tech-

nology is available. Current barriers to widespread clinical

implementation of technologies reviewed herein, such as

lrGS, OGM, and, to a lesser degree, RNA-seq (which is avail-

able clinically, though at a small number of laboratories),

include issues with payor reimbursement, which is closely

tied to published evidence of clinical utility or noninferior-

ity, and cost of data generation and analysis.

Careful reevaluation of prior genetic and laboratory

testing of the individual with a suspected Mendelian

condition may itself be high yield. This includes ensuring

any prior VUSs are not now explanatory and that any

candidate genes have not recently been associated with a

similar phenotype. Prior candidate variants or genes

should be shared via Matchmaker Exchange61 to facilitate

Figure 1. Evaluation of individuals unsolved after ES
Testing paths and options for individuals with clinical findings that cannot be partially or fully explained by a precise genetic diagnosis
after exome sequencing are shown. In each path, exome reanalysis should be considered first. Many options are similar among the
various paths but are of highest diagnostic yield at different steps of the evaluation process.
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Table 4. Clinical and research options for specific classes of variants

Variant type Clinical testing options Research testing options

Missing Variant (one variant in AR condition,
no variants in AD or XLD condition with
clear phenotype)

d reanalysis of existing data: may identify

new variants or new gene-phenotype as-

sociations

d microarray or exon-level array: may iden-

tify CNVs missed by prior testing

d targeted sequencing with del/dup: panels

may include regions not analyzed by prior

testing such as intronic or regulatory re-

gions

d RNA-seq: evaluate for splicing or expres-

sion difference that could identify a

missing variant or confirm the suspected

diagnosis

d Methylation analysis: could be used to

confirm suspected condition if there is an

associated difference in methylation

d OGM: may identify SVs missed by prior

testing

d srGS: may capture intronic variants, regu-

latory variants, or SVs not identified by

prior testing

d reanalysis of existing data: reanalysis on a

research basis may identify additional

variants or be used in gene discovery ef-

forts

d srGS: may identify additional variants

when performed on a research basis

d RNA-seq: evaluation of splicing or expres-

sion differences could identify or confirm a

missing variant

d LRS: targeted or lrGS may identify intronic

or regulatory variants, a missed SV, or

differences in methylation that could

affect function of the gene

Variants that cannot be phased (de novo
variants or parental samples not available)

d single gene testing: if variants are close

together, they may be captured and

phased by short-read sequencing; discuss

with lab prior to sending

d mate-pair sequencing: may allow for

phasing of variants

d LRS: reads from targeted or lrGS may be

long enough to phase or allow for phasing

via other nearby variants

Structural variant (to identify exact
breakpoints or additional variants)

d karyotype: if additional large-scale vari-

ants are suspected such as translocations,

large inversions, or large CNVs

d microarray or exon-level array: evaluate for

additional CNVs if not already done

d srGS: may be used to identify exact

breakpoints of an SV or additional variants

if lab is able to report these

d OGM: could identify additional changes

but would be unlikely to provide more

precise breakpoints

d mate-pair sequencing: may be used to

identify additional SVs or confirm break-

points of known SVs

d LRS: targeted or lrGS can be used to iden-

tify precise breakpoints and additional SVs

as well as methylation changes associated

with the SV

Variant in candidate gene (gene is not clearly
associated with the phenotype)

d additional testing: consider other tests

that may identify variants in genes previ-

ously associated with the phenotype but

missed by prior testing

d methylation analysis: may identify

methylation pattern similar to other well-

described conditions and help with inter-

pretation of candidate gene

d functional studies: may confirm pathoge-

nicity and that the variant gives a similar

phenotype as the affected individual

d matchmaker exchange: sharing candidate

gene may identify other individuals with

similar phenotype and variants in the same

gene

Variant of uncertain significance
(pathogenicity of the variant is not
established)

d reanalysis of existing data: variant may

have been reported in separate affected

individual since initially identified and

could be upgraded

d RNA-seq: could be used to upgrade variant

in cases where the variant is suspected to

affect splicing or expression

d methylation analysis: could be used to

confirm pathogenicity if the variant is in a

gene with an associated difference in

methylation

d biochemical testing: assessment of spe-

cific biomarkers to confirm an uncertain

diagnosis

d functional studies: may confirm pathoge-

nicity and that the variant gives a similar

phenotype as the affected individual

d matchmaker exchange: sharing candidate

gene may identify other individuals with

similar phenotype and variants in the same

gene

AR, autosomal recessive; AD, autosomal dominant; XLD, X-linked dominant; CNV, copy-number variant; SV, structural variant; OGM, optical genome mapping;
srGS, short-read whole-genome sequencing; LRS, long-read sequencing; lrGS, long-read whole-genome sequencing; SV, structural variant.

The American Journal of Human Genetics 110, 1229–1248, August 3, 2023 1239



identification of similar case reports that can strengthen as-

sociations or phenotype expansions. Exome reanalysis, if

possible, should be undertaken at least once, especially if

it has been more than 1 year since the initial test or last re-

analysis. Easily overlooked tests, such as karyotype or mi-

croarray, should also be considered if prior testing may

have missed variants that could be identified via these

modalities.

Determining the next best step depends on several factors

and should be considered on a case-by-case basis. In cases

with a candidate gene, such as when a single variant has

been identified in a gene associated with a recessive Mende-

lian condition or no variants were identified in an affected

individual with strong biochemical or phenotypic evidence

pointing to a single gene or small number of genes associ-

ated with a dominant Mendelian condition, then evalua-

tion for a missing variant should be undertaken (Figure 1,

Table 4). Clinical testing options include targeted RNA-

seq, methylation analysis if the suspectedMendelian condi-

tion is associated with a distinct epigenetic signature, or

srGS. Prior to ordering srGS, the provider should confirm

whether the testing laboratory will analyze and report vari-

ants that are beyond what would typically be reported by

ES, such as deep intronic variants, regulatory variants, and

SVs. If clinical options are not available, T-LRS (ONT) or

lrGS (PacBio or ONT) is potentially the next-best test to be

performed on a research basis, as these offer simultaneous

evaluation of coding/noncoding SNVs, indels, repeat ex-

pansions/constrictions, and SVs that may be missed by

srGS as well as providing variant phasing and methylation

changes.45,85 However, potential challenges may arise in

clinical return of results identified via research, as options

for confirmation of a variant detected by lrGS in a CLIA-

certified laboratory may be limited. We anticipate that

future studies will provide data to better guide the deci-

sion-making process in these cases.

For individualswithout a clear candidategeneor variant to

explore, abroadapproachshouldbe taken (Figure1, Table 4).

In these cases, clinicians should consider methylation anal-

ysis, srGS, or RNA-seq while keeping in mind that empirical

data as to which test has the highest diagnostic yield in this

setting is limited. Clinical suspicion and test availability can

be a guide, suchas orderingmethylationanalysis for individ-

uals in which a Mendelian condition with a distinct epige-

netic signature is suspected. Similarly, srGS may be a better

choice thanRNA-seq for individualswith isolatedneurologic

phenotypes, since the variant responsiblemight be in a gene

expressed only in the brain and would therefore be difficult

to identify via RNA-seq of readily available tissues (e.g., fibro-

blasts). Furthermore, only a limited number of clinical labo-

ratories offer untargetedRNA-seq at this time andno system-

atic evaluation of their results has been undertaken. Given

the unproven clinical utility, most payors do not currently

reimburse for these tests and institutional policies may

dictate whether they can be ordered. Because of these limita-

tions, it may be best to refer the individual to a research pro-

gram focused on families without a precise genetic diagnosis

(Table 5).

Table 5. A subset of global diagnostic programs for individuals with rare or unsolved genetic diseases

Program Country/region Website

Rare and Undiagnosed Diseases
Diagnostic Service148

Australia https://www.australiangenomics.org.au/research/
the-australian-undiagnosed-diseases-network/

Care4Rare Canada149 Canada https://www.care4rare.ca/

RD-Connect150 Europe https://rd-connect.eu/

Solve-RD Europe https://solve-rd.eu/

National Center for Rare
diseases (NCRD)151

Italy https://www.udnpitaly.com/pagine-13-about_us

The Initiative on Rare and
Undiagnosed Diseases
(IRUD)152

Japan https://www.amed.go.jp/en/program/IRUD/

Korean Undiagnosed Diseases
Program (KUDP)153

Korea n/a

Rare Disease Genomics
in South Africa

South Africa https://www.sun.ac.za/english/faculty/healthsciences/
Molecular_Biology_Human_Genetics/rare-disease_
genomics/research-projects

SpainUDP154 Spain https://spainudp.isciii.es/home/

Deciphering Developmental
Disorders155

United Kingdom https://www.ddduk.org/

Genomics England156 United Kingdom https://www.genomicsengland.co.uk/

GREGoR Consortium United States https://gregorconsortium.org/

Undiagnosed Diseases Network19 United States https://commonfund.nih.gov/diseases/

Not all programs remain active. Table adapted from Cloney et al.157
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The options in the decision tree presented here highlight

the complexity of evaluating individuals with suspected

Mendelian conditions who lack a precise genetic diagnosis

(Figure 1).Current testing approaches requiremultiple steps,

which may involve repeated clinical visits and require indi-

viduals and their caregivers to take time off work, travel

longdistances, andbesubjected tomultiple studies and tests.

Costs associated with travel and/or time away from work

may result in individuals delaying or deferring visits and

testing, resulting in a system that is not equitable and that

providesnoclearbenefit toanyoneparticipant.158This leads

to a question of whether and how new technologies can be

used to simplify the clinical testing process by reducing the

number of individual tests required, with the goal of

reducing the time to diagnosis and increasing the diagnostic

rate. Additionally, dual diagnoses where more than one

genetic diagnosis is identified in an individual have been re-

ported in up to 5%of affected individuals and are often chal-

lenging to diagnose because of the presentation of a blended

phenotype.159,160 Finally, broadening the genetic investiga-

tion via srGS or lrGS may increase the ability to detect sec-

ondary findings or identify additional VUSs, both of which

are importantpoints to consider and include inpretest coun-

seling with families. In the near future, we anticipate that a

single test, such as srGS, will be used to simplify the evalua-

tion process and reduce inequities in care, with lrGS replac-

ing or supplementing this data as costs fall over time.161

Carefully designed studies will be needed to determine

whether one next-best test exists after negative ES or if

the choice of what test to pursue is best determined by un-

derlying phenotype or clinical suspicion. These studies will

be supported by the collection and biobanking of bio-

specimens from those individuals affected by rare Mende-

lian conditions as both resources for benchmarking as well

as for understanding novel mechanisms or genes that un-

derpin these unsolved cases. The development of new

reference genomes that permit telomere-to-telomere anal-

ysis of affected-individual genomes will need to be consid-

ered and likely lead to novel gene-phenotype associations

in previously inaccessible genomic regions.162,163 Over

time, the current standard diagnostic evaluation pathway

will most likely change, with a focus on simplifying overall

testing and evaluation of previously ‘‘challenging’’ regions

or variants. Thus, we envision a time when a single data

source, such as srGS or lrGS, is evaluated in a stepwise

fashion, perhaps enhanced by concurrent methylome or

transcriptome, or metabolomic analysis that replaces the

time-consuming progression of microarray, panel testing,

and ES. Both affected individuals and providers may then

benefit from simplified testing with decreased time to diag-

nosis and, ideally, greater understanding of the molecular

underpinnings of rare diseases.
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