594 research outputs found

    Master manipulator designed for highly articulated robotic instruments in single access surgery

    Get PDF
    The performance of a master-slave robotic system depends significantly on the ergonomics and the capability of its master device to correctly interface the user with the slave robot. Master manipulators generating commands in task space represent a commonly adopted solution for controlling a range of slave robots while retaining an ergonomic design. However, these devices present several drawbacks, such as requiring the use of clutching mechanics to compensate for the mismatch between slave and master workspaces, and the lack of capability to intuitively transmit important information such as specific joint limits to the user. In this paper, a novel joint-space master manipulator is presented. This manipulator emulates the kinematic structure of highly flexible surgical instruments which it is designed to control. This system uses 6 active degrees of freedom to compensate for its own weight, as well as to provide force feedback corresponding to the slave robot's joint limits. A force/torque sensor integrated at the end effector is used to relay user-generated forces and torques directly to specific joints. This is performed to counteract the friction stemming from structural constraints imposed by the kinematic design of the instruments. Finally, a usability study is carried out to test the validity of the system, proving that the instruments can be intuitively controlled even at the extremities of the workspace

    Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus <it>Trichophyton rubrum </it>is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of <it>T. rubrum </it>exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries.</p> <p>Results</p> <p>The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 <it>T. rubrum </it>sequences that had not been previously deposited in public databases.</p> <p>Conclusion</p> <p>In this study, we identified novel <it>T. rubrum </it>genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of <it>T. rubrum </it>to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging <it>T. rubrum </it>with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.</p

    Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8(+) T cell response.

    Get PDF
    Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8(+) T cell populations specific for variants of the nonstructural protein epitope NS3133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3133-DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2(+) TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2(+) TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs

    Cell-Cell Contact Preserves Cell Viability via Plakoglobin

    Get PDF
    Control over cell viability is a fundamental property underlying numerous physiological processes. Cell spreading on a substrate was previously demonstrated to be a major factor in determining the viability of individual cells. In multicellular organisms, cell-cell contact is likely to play a significant role in regulating cell vitality, but its function is easily masked by cell-substrate interactions, thus remains incompletely characterized. In this study, we show that suspended immortalized human keratinocyte sheets with persisting intercellular contacts exhibited significant contraction, junctional actin localization, and reinforcement of cell-cell adhesion strength. Further, cells within these sheets remain viable, in contrast to trypsinized cells suspended without either cell-cell or cell-substrate contact, which underwent apoptosis at high rates. Suppression of plakoglobin weakened cell-cell adhesion in cell sheets and suppressed apoptosis in suspended, trypsinized cells. These results demonstrate that cell-cell contact may be a fundamental control mechanism governing cell viability and that the junctional protein plakoglobin is a key regulator of this process. Given the near-ubiquity of plakoglobin in multicellular organisms, these findings could have significant implications for understanding cell adhesion, modeling disease progression, developing therapeutics and improving the viability of tissue engineering protocols

    Comparison of Influenza and SIV Specific CD8 T Cell Responses in Macaques

    Get PDF
    Macaques are a potentially useful non-human primate model to compare memory T-cell immunity to acute virus pathogens such as influenza virus and effector T-cell responses to chronic viral pathogens such as SIV. However, immunological reagents to study influenza CD8+ T-cell responses in the macaque model are limited. We recently developed an influenza-SIV vaccination model of pigtail macaques (Macaca nemestrina) and used this to study both influenza-specific and SIV-specific CD8+ T-cells in 39 pigtail macaques expressing the common Mane-A*10+ (Mane-A01*084) MHC-I allele. To perform comparative studies between influenza and SIV responses a common influenza nucleoprotein-specific CD8+ T-cell response was mapped to a minimal epitope (termed RA9), MHC-restricted to Mane-A*10 and an MHC tetramer developed to study this response. Influenza-specific memory CD8+ T-cell response maintained a highly functional profile in terms of multitude of effector molecule expression (CD107a, IFN-γ, TNF-α, MIP-1β and IL-2) and showed high avidity even in the setting of SIV infection. In contrast, within weeks following active SIV infection, SIV-specific CD8+ effector T-cells expressed fewer cytokines/degranulation markers and had a lower avidity compared to influenza specific CD8+ T-cells. Further, the influenza specific memory CD8 T-cell response retained stable expression of the exhaustion marker programmed death-marker-1 (PD-1) and co-stimulatory molecule CD28 following infection with SIV. This contrasted with the effector SIV-specific CD8+ T-cells following SIV infection which expressed significantly higher amounts of PD-1 and lower amounts of CD28. Our results suggest that strategies to maintain a more functional CD8+ T-cell response, profile may assist in controlling HIV disease

    Influenza-Specific T Cells from Older People Are Enriched in the Late Effector Subset and Their Presence Inversely Correlates with Vaccine Response

    Get PDF
    T cells specific for persistent pathogens accumulate with age and express markers of immune senescence. In contrast, much less is known about the state of T cell memory for acutely infecting pathogens. Here we examined T cell responses to influenza in human peripheral blood mononuclear cells from older (>64) and younger (<40) donors using whole virus restimulation with influenza A (A/PR8/34) ex vivo. Although most donors had pre-existing influenza reactive T cells as measured by IFNγ production, older donors had smaller populations of influenza-responsive T cells than young controls and had lost a significant proportion of their CD45RA-negative functional memory population. Despite this apparent dysfunction in a proportion of the older T cells, both old and young donors' T cells from 2008 could respond to A/California/07/2009 ex vivo. For HLA-A2+ donors, MHC tetramer staining showed that a higher proportion of influenza-specific memory CD8 T cells from the 65+ group co-express the markers killer cell lectin-like receptor G1 (KLRG1) and CD57 compared to their younger counterparts. These markers have previously been associated with a late differentiation state or immune senescence. Thus, memory CD8 T cells to an acutely infecting pathogen show signs of advanced differentiation and functional deterioration with age. There was a significant negative correlation between the frequency of KLRG1+CD57+ influenza M1-specific CD8 T cells pre-vaccination and the ability to make antibodies in response to vaccination with seasonal trivalent inactivated vaccine, whereas no such trend was observed when the total CD8+KLRG1+CD57+ population was analyzed. These results suggest that the state of the influenza-specific memory CD8 T cells may be a predictive indicator of a vaccine responsive healthy immune system in old age

    Measurement of prompt J/ψ pair production in pp collisions at √s = 7 Tev

    Get PDF
    Peer reviewe
    corecore