81 research outputs found
Phase transitions and ordering of confined dipolar fluids
We apply a modified mean-field density functional theory to determine the
phase behavior of Stockmayer fluids in slitlike pores formed by two walls with
identical substrate potentials. Based on the Carnahan-Starling equation of
state, a fundamental-measure theory is employed to incorporate the effects of
short-ranged hard sphere - like correlations while the long-ranged
contributions to the fluid interaction potential are treated perturbatively.
The liquid-vapor, ferromagnetic liquid - vapor, and ferromagnetic liquid -
isotropic liquid first-order phase separations are investigated. The local
orientational structure of the anisotropic and inhomogeneous ferromagnetic
liquid phase is also studied. We discuss how the phase diagrams are shifted and
distorted upon varying the pore width.Comment: 15 pages including 8 figure
Innovation platforms in agricultural research for development
Innovation platforms are fast becoming part of the mantra of agricultural research for development projects and programmes. Their basic tenet is that stakeholders depend on one another to achieve agricultural development outcomes, and hence need a space where they can learn, negotiate and coordinate to overcome challenges and capture opportunities through a facilitated innovation process. Although much has been written on how to implement and facilitate innovation platforms efficiently, few studies support ex-ante appraisal of when and for what purpose innovation platforms provide an appropriate mechanism for achieving development outcomes, and what kinds of human and financial resource investments and enabling environments are required. Without these insights, innovation platforms run the risk of being promoted as a panacea for all problems in the agricultural sector. This study makes clear that not all constraints will require innovation platforms and, if there is a simpler and cheaper alternative, that should be considered first. Based on the review of critical design principles and plausible outcomes of innovation platforms, this study provides a decision support tool for research, development and funding agencies that can enhance more critical thinking about the purposes and conditions under which innovation platforms can contribute to achieving agricultural development outcomes
Innovation platforms in agricultural research for development : Ex-ante Appraisal of the Purposes and Conditions Under Which Innovation Platforms can Contribute to Agricultural Development Outcomes
Innovation platforms are fast becoming part of the mantra of agricultural research for development projects and programmes. Their basic tenet is that stakeholders depend on one another to achieve agricultural development outcomes, and hence need a space where they can learn, negotiate and coordinate to overcome challenges and capture opportunities through a facilitated innovation process. Although much has been written on how to implement and facilitate innovation platforms efficiently, few studies support ex-ante appraisal of when and for what purpose innovation platforms provide an appropriate mechanism for achieving development outcomes, and what kinds of human and financial resource investments and enabling environments are required. Without these insights, innovation platforms run the risk of being promoted as a panacea for all problems in the agricultural sector. This study makes clear that not all constraints will require innovation platforms and, if there is a simpler and cheaper alternative, that should be considered first. Based on the review of critical design principles and plausible outcomes of innovation platforms, this study provides a decision support tool for research, development and funding agencies that can enhance more critical thinking about the purposes and conditions under which innovation platforms can contribute to achieving agricultural development outcomes
Identification and Characterization of RcMADS1, an AGL24 Ortholog from the Holoparasitic Plant Rafflesia cantleyi Solms-Laubach (Rafflesiaceae)
10.1371/journal.pone.0067243PLoS ONE86-POLN
Dynamic genome evolution in a model fern
The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology
Recent advances in understanding the roles of whole genome duplications in evolution
Ancient whole-genome duplications (WGDs)—paleopolyploidy events—are key to solving Darwin’s ‘abominable mystery’ of how flowering plants evolved and radiated into a rich variety of species. The vertebrates also emerged from their invertebrate ancestors via two WGDs, and genomes of diverse gymnosperm trees, unicellular eukaryotes, invertebrates, fishes, amphibians and even a rodent carry evidence of lineage-specific WGDs. Modern polyploidy is common in eukaryotes, and it can be induced, enabling mechanisms and short-term cost-benefit assessments of polyploidy to be studied experimentally. However, the ancient WGDs can be reconstructed only by comparative genomics: these studies are difficult because the DNA duplicates have been through tens or hundreds of millions of years of gene losses, mutations, and chromosomal rearrangements that culminate in resolution of the polyploid genomes back into diploid ones (rediploidisation). Intriguing asymmetries in patterns of post-WGD gene loss and retention between duplicated sets of chromosomes have been discovered recently, and elaborations of signal transduction systems are lasting legacies from several WGDs. The data imply that simpler signalling pathways in the pre-WGD ancestors were converted via WGDs into multi-stranded parallelised networks. Genetic and biochemical studies in plants, yeasts and vertebrates suggest a paradigm in which different combinations of sister paralogues in the post-WGD regulatory networks are co-regulated under different conditions. In principle, such networks can respond to a wide array of environmental, sensory and hormonal stimuli and integrate them to generate phenotypic variety in cell types and behaviours. Patterns are also being discerned in how the post-WGD signalling networks are reconfigured in human cancers and neurological conditions. It is fascinating to unpick how ancient genomic events impact on complexity, variety and disease in modern life
The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants
Vascular plants appeared ~410 million years ago then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes (1). We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first non-seed vascular plant genome reported. By comparing gene content in evolutionary diverse taxa, we found that the transition from a gametophyte- to sporophyte- dominated life cycle required far fewer new genes than the transition from a non-seed vascular to a flowering plant, while secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in post- transcriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the tasiRNA pathway and extensive RNA editing of organellar genes
One thousand plant transcriptomes and the phylogenomics of green plants
Abstract: Green plants (Viridiplantae) include around 450,000–500,000 species1, 2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life
The role of leadership in salespeople’s price negotiation behavior
Salespeople assume a key role in defending firms’ price levels in price negotiations with customers. The degree to which salespeople defend prices should critically depend upon their leaders’ influence. However, the influence of leadership on salespeople’s price defense behavior is barely understood, conceptually or empirically. Therefore, building on social learning theory, the authors propose that salespeople might adopt their leaders’ price defense behavior given a transformational leadership style. Furthermore, drawing on the contingency leadership perspective, the authors argue that this adoption fundamentally depends on three variables deduced from the motivation–ability–opportunity (MAO) framework, that is, salespeople’s learning motivation, negotiation efficacy, and perceived customer lenience. Results of a multi-level model using data from 92 salespeople and 264 salesperson–customer interactions confirm these predictions. The first to explore contingencies of salespeople’s adoption of their transformational leaders’ price negotiation behaviors, this study extends marketing theory and provides actionable guidance to practitioners
- …