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Abstract. We apply a modified mean-field density functional theory to determine the phase behavior of
Stockmayer fluids in slit-like pores formed by two walls with identical substrate potentials. Based on the
Carnahan-Starling equation of state, a fundamental-measure theory is employed to incorporate the ef-
fects of short-ranged hard-sphere-like correlations while the long-ranged contributions to the fluid interac-
tion potential are treated perturbatively. The liquid-vapor, ferromagnetic-liquid–vapor, and ferromagnetic-
liquid–isotropic-liquid first-order phase separations are investigated. The local orientational structure of
the anisotropic and inhomogeneous ferromagnetic liquid phase is also studied. We discuss how the phase
diagrams are shifted and distorted upon varying the pore width.

PACS. 61.20.Gy Theory and models of liquid structure – 64.75.Gh Phase separation and segregation in
model systems (hard spheres, Lennard-Jones, etc.) – 64.70.Ja Liquid-liquid transitions – 64.75.-g Phase
equilibria

1 Introduction

The structure and thermodynamics of confined dipolar flu-
ids (such as molecular liquids, ferrofluids, and electrorhe-
ological fluids) have recently attracted considerable atten-
tion. Theoretical [1–3], computer simulation [4–9], and ex-
perimental [10,11] studies have provided significant infor-
mation about the orientational and spatial arrangement of
dipolar particles in the vicinity of solid walls. The strongly
anisotropic and long-ranged character of dipolar forces
causes particular difficulties for the theoretical description
of these systems. As long as one is not aiming for a quan-
titative description of a specific system but for general
phenomena and trends, the so-called Stockmayer model
has turned out to be rather useful [12]. It considers spher-
ical particles interacting with Lennard-Jones (LJ) pair po-
tentials plus point-like permanent dipoles at their centre.
In this paper we adopt the magnetic language, assum-
ing that the particles carry magnetic dipole moments of
strength m because the main applications we have in mind
are ferrofluids. (The results are identical for ferroelectric
particles.)

Bulk dipolar fluids such as the Stockmayer model sys-
tem may exhibit three distinct fluid phases: isotropic va-
por, isotropic liquid, and ferromagnetic liquid [12,13].
(In the present study we focus on sufficiently high tem-
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peratures so that freezing is not a concern [14].) Ac-
cordingly the following first-order phase transitions can
occur: isotropic-vapor–isotropic-liquid, isotropic-liquid–
ferromagnetic-liquid, and isotropic-vapor–ferromagnetic-
liquid. The phase diagrams exhibit the usual liquid-gas
critical point, a triple point, a tricritical point, and a line of
critical points corresponding to second-order phase tran-
sitions between the isotropic and the ferromagnetic liquid.
For bulk dipolar fluids these phase transitions and critical
points and lines have been detected in various theoretical
studies [12–16].

However, to the best of our knowledge there is no theo-
retical study which predicts the complete global phase di-
agrams and the structure of confined dipolar fluid phases.
Recently Gramzow and Klapp [3] have studied the phase
behavior and orientational structure of Stockmayer fluids
confined to slit pores. Within their modified mean-field
(MMF) density functional theory (DFT) they considered
only the subspace of spatially homogeneous local densities
throughout the slit pore and focused on the orientational
structure only. This allowed them to study the influence
of the confinement on the phase behavior but neglecting
the inevitable spatial inhomogeneities of the phases under
study. Our results will show that in the case of confined
dipolar liquids, as for other fluids, there are strong spatial
inhomogeneities in the vicinity of the walls. This inhomo-
geneous character of the liquid phases becomes more pro-
nounced upon increasing of the density. These phenomena
require a more sophisticated theory in order to describe
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the structure and the phase equilibria of confined dipolar
systems.

In the present study we also use the modified mean-
field (MMF) DFT approximation. However, for the de-
scription of the hard-sphere reference system, instead of
the homogeneous bulk Carnahan-Starling free-energy ex-
pression, a fundamental measure theory free-energy func-
tional [17] is applied in order to capture the short-
ranged hard-sphere-like correlations. Our results for the
confinement-induced shifts and the distortions of the
phase boundaries relative to the bulk ones are compared
with the corresponding Kelvin equation.

The paper is organized as follows. In Sections 2 and 3
the model and the extension of the MMF density func-
tional theory for confined dipolar fluids are presented and
developed, respectively. In Section 4 the calculation of the
orientational order and the physical meaning of the or-
der parameters are discussed. Sections 5 and 6 present
the details of the Euler-Lagrange and of the Kelvin equa-
tions, respectively. The results of our calculations and a
discussion are given in Section 7. Certain important com-
putational details are summarized in Appendices A, B,
and C.

2 Microscopic model

We study so-called hard-core Stockmayer fluids which are
characterized by the interaction potential

uS(r12, ω1, ω2) =






4ǫ[(σ/r12)
12 − (σ/r12)

6]

−m2D(ω12, ω1, ω2)/r3
12, r12 ≥ σ,

∞, r12 < σ,

(1)
where

D(ω12, ω1, ω2) = 3[m̂1(ω1) · r̂12][m̂2(ω2) · r̂12]

−[m̂1(ω1) · m̂2(ω2)] (2)

is a rotationally invariant function. In equation (1) the
first term is the Lennard-Jones potential with length and
energy parameters σ and ǫ, respectively. The second term
in equation (1) together with equation (2) describes the
dipole-dipole interaction potential, where particle 1 (2)
with diameter σ is located at r1 (r2) and carries at its
center a point dipole moment of strength m with an ori-
entation given by the unit vector m̂1(ω1) (m̂2(ω2)) with
polar angles ω1 = (θ1, φ1) (ω2 = (θ2, φ2)); r12 = r1 − r2 is
the difference vector between the centres of particle 1 and
2, r12 = |r12|, and r̂12 = r12/r12 is a unit vector with ori-
entation ω12 = (θ12, φ12). In order to apply density func-
tional theory, this interaction potential is decomposed into
a short-ranged repulsive part

ur(r12) = uhs(r12) =

{
0, r12 ≥ σ,

∞, r12 < σ,
(3)

and into a long-ranged excess part

uexc(r12, ω1, ω2) = Θ(r12 − σ)uS(r12, ω1, ω2). (4)

Thus the total pair potential is given by

uS(r12, ω1, ω2) = ur(r12) + uexc(r12, ω1, ω2). (5)

This decomposition lends itself to choose a hard-sphere
reference system characterized by ur(r12) = uhs(r12) for
which reliable approximations for the free energy are
known. The excess part uexc(r12, ω1, ω2) will be treated
perturbatively in an appropriate way.

For the fluid-wall interaction we consider two different
potentials. In the case of a purely hard wall we use the
hard-wall potential

uwh(z) =

{
0, |z| < (L − σ)/2,

∞, |z| ≥ (L − σ)/2,
(6)

where z is the coordinate normal to the walls and L is the
distance between the surfaces of the hard, parallel walls,
which we call repulsive walls. For the study of attractive
walls we choose the external substrate potential

uwa(z) =
{
− 2π

3 ǫw

[
( σ

L/2+z )3+( σ
L/2−z )3

]
, |z|<(L−σ)/2,

∞, |z|≥(L−σ)/2,
(7)

where ǫw sets the energy scale. This equation can be ob-
tained from the assumption that both walls consist of LJ
particles interacting with the fluid particles of the same
size also via the LJ potential with the energy scale ǫw.
Averaging the LJ interactions over all positions of the
wall particles and approximating the averaged repulsive
part of the LJ potential by a hard-core potential one ob-
tains the fluid particle-wall interaction potential given by
equation (7).

3 Modified mean-field density functional

theory for one-component fluids

For a one-component nonuniform fluid configuration
ρ̂(r, ω) denotes the number density of dipolar particles at
a point r = (x, y, z) with an orientation ω = (θ, φ) relative
to a spatially fixed coordinate system. The total number
density of particles, independent of orientation, is given as

ρ̂(r) =

∫
dωρ̂(r, ω) =

∫ 2π

0

dφ

∫ π

0

dθ sin(θ)ρ̂(r, ω). (8)

This allows one to split ρ̂(r, ω) into the total number den-
sity ρ̂(r) and a normalized space- and angle-dependent
orientational distribution function α̂(r, ω)

ρ̂(r, ω) = ρ̂(r)α̂(r, ω),

∫
dω α̂(r, ω) = 1. (9)

Within density functional theory [18], the equilibrium den-
sity distribution ρ(r, ω;T, µ) of an inhomogeneous fluid in
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the presence of an external potential uw minimizes the
grand canonical potential

Ω[{ρ̂(r, ω)}, T, µ] = F [{ρ̂(r, ω)}, T ]

+

∫
d3rdωρ̂(r, ω)(uw(r, ω) − µ)

+

∫
d3r κ(r)

(
1 −
∫

dω α̂(r, ω)

)
, (10)

and thus satisfies the Euler-Lagrange equation

δΩ[{ρ̂(r, ω)}, T, µ]

δρ̂(r, ω)

∣∣∣∣∣
ρ̂(r,ω)=ρ(r,ω;T,µ)

= 0. (11)

Here F is the Helmholtz free-energy density functional of
the system and µ is the chemical potential. The last term
in equation (10) takes into account the normalization con-
dition (Eq. (9)) for the orientational distribution function
α̂(r, ω) by a Lagrange parameter κ(r). Due to the two
distinct contributions to the particle interaction potential
(Eq. (5)) the free-energy functional F decomposes into an
ideal gas term F id and two corresponding parts:

F [{ρ̂(r, ω)}, T ] = F id[{ρ̂(r, ω)}, T ] + F ref [{ρ̂(r)}, T ]

+F exc[{ρ̂(r, ω)}, T ], (12)

where F ref is the reference and F exc is the excess free-
energy density functional.

In order to describe the planar wall-fluid interfaces,
we consider a slab-shaped macroscopic system with the
surfaces of the slab parallel to the xy-plane. The distance
between the parallel surfaces is L. Thus, apart from spon-
taneous symmetry breaking like freezing, the equilibrium
configuration of the system is inhomogeneous only in the
z direction and translationally invariant in the x and y
directions. Under these circumstances the total number
density ρ(r) = ρ(z) is a function of z only and the ori-
entational profile α(r, ω) = α(z, ω) depends on z and the
polar angle ω. In a coordinate system fixed in space the
actual orientational distribution function

α(z, ω) =

∞∑

l=0

l∑

m=−l

αlm(z)Ylm(ω), (13)

can be expanded in terms of the spherical harmonics
Ylm(ω) where α00 = 1/

√
4π due to the normalization and

α∗
lm = (−1)mαlm because α is real. (Here and in the

following m ≡ −m.) The expansion coefficients αlm(z),
which can be interpreted as orientational order parame-
ters, are related to the full distribution function via

αlm(z) =

∫
dωα(z, ω)Y ∗

lm(ω). (14)

As presented below, for a slab-shaped system of transver-
sal size L one obtains explicit expressions for the three
terms of the Helmholtz free-energy density functional (see
Eq. (12)).

3.1 The free-energy functional for the ideal gas

For the slab-like shape of the sample under consideration
the ideal-gas contribution has the form

F id =
A

β

∫ L/2

−L/2

dzρ̂(z)[ln(ρ̂(z)Λ3) − 1]

+
A

β

∫ L/2

−L/2

dzρ̂(z)

∫
dωα̂(z, ω) ln[4πα̂(z, ω)], (15)

where A is the lateral cross-sectional area of the system,
Λ is the de Broglie wavelength, and β = 1/(kBT ) is the
inverse temperature.

3.2 The reference free-energy functional

For the description of the hard-sphere reference free-
energy functional we adopt the fundamental measure the-
ory, which was initially proposed by Rosenfeld [19,20]

F ref =
A

β

∫ L/2

−L/2

dzΦ({nα(z)}); (16)

the function Φ and the weighted densities nα(z) are de-
fined in Appendix A.

3.3 The excess free-energy functional

We approximate the excess free-energy functional in terms
of the modified mean-field density functional theory [21–
23]. Using equation (13) for the present slab-like geometry,
one obtains the following expression:

F exc =
1

2β

∫ L/2

−L/2

dz1

∫ L/2

−L/2

dz2

∫

A

dx1dy1

∫

A

dx2dy2

×ρ̂(z1)ρ̂(z2)
∑

l1,m1

∑

l2,m2

α̂l1m1
(z1)α̂l2m2

(z2)

×
∫

dω1

∫
dω2Yl1m1

(ω1)e
−uref (r12)

×(1 − e−uexc(r12,ω1,ω2))Yl2m2
(ω2). (17)

Here and in the following the summations over li,mi are
taken as

∑

li,mi

. . . =

∞∑

li=0

li∑

mi=−li

. . . . (18)

In order to extract the explicit proportionality to the large
cross-sectional area A, we introduce the sum and the dif-
ference of the lateral coordinates (x1, y1) and (x2, y2)

x12 = x1 − x2, y12 = y1 − y2,

x =
x1 + x2

2
, y =

y1 + y2

2
. (19)
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In terms of these new variables the integration of any func-
tion f(r12) can be written as

∫

A

dx1dy1

∫

A

dx2dy2f(r12) =

∫

A

dxdy

∫

A

dx12dy12f(r12) =

A

∫

A

dx12dy12f(r12). (20)

In order to proceed, we replace the rectangular coordinates
(x12, y12) with polar coordinates (R12, φ12) and take into
account equations (17) and (20) for the excess free-energy
functional

F exc

A
=

∫ L/2

−L/2

dz1

∫ L/2

−L/2

dz2 ρ̂(z1)ρ̂(z2)

×
∑

l1,m1

∑

l2,m2

α̂l1m1
(z1)α̂l2m2

(z2)ul1m1l2m2
(z1−z2),

(21)

where

ul1m1l2m2
(z1 − z2) = − 1

2β

∫ ∞

0

dR12R12Θ(r12 − σ)

×
∫ 2π

0

dφ12

∫
dω1

∫
dω2Yl1m1

(ω1)

×fM (r12, ω1, ω2)Yl2m2
(ω2). (22)

In equation (22) fM denotes the Mayer function of the
excess potential

fM (r12, ω1, ω2) = e−βuexc(r12,ω1,ω2) − 1, (23)

where, in accordance with the planar polar coordinates
used for the slab-geometry,

r12 =
√

R2
12 + (z1 − z2)2. (24)

Via the vector r̂12 the rotationally invariant function
D(ω1, ω2, ω12) (Eq. (2)) depends on ϑ12 as well. There-
fore in equation (22) the substitutions

sinϑ12 =
R12√

R2
12 + (z1 − z2)2

,

cos ϑ12 =
z1 − z2√

R2
12 + (z1 − z2)2

(25)

have to be carried out prior to the integration over the
variable R12. In our calculation we have expanded the
exponential term in equation (23), containing the dipole-
dipole interaction, into a Taylor series

fM = −1 + e−βuLJ (r12)

[
1 +

βm2

(r12)3
D +

1

2 !

β2m4

(r12)6
D2 . . .

]
.

(26)

In accordance with equations (22) and (26), ul1m1l2m2
is

given as a Taylor series, too

ul1m1l2m2
= u

(0)
l1m1l2m2

+ u
(1)
l1m1l2m2

× (m2)1

+u
(2)
l1m1l2m2

× (m2)2 . . . , (27)

with the coefficients

u
(i)
l1m1l2m2

(z) = −β i−1

2i !

∫ ∞

0

dR12R12Θ(R2
12 + z2 − σ2)

×
exp

[
−βuLJ

(√
R2

12 + z2
)]

− δi0

(R2
12 + z2)3i/2

A
(i)
l1m1l2m2

×
(

z√
R2

12 + z2

)
. (28)

In equation (28) the coefficients A
(i)
l1m1l2m2

can be ex-
pressed as

A
(i)
l1m1l2m2

(cos θ12) =

∫ 2π

0

dφ12

∫
dω1

∫
dω2Yl1m1

(ω1)

×[D(ω12, ω1, ω2)]
iYl2m2

(ω2). (29)

In Appendix B we present the nonzero coefficients

A
(i)
l1m1l2m2

for i, l1, l2 = 0, 1, 2. In the bulk limit the ex-
pressions for ul1m1l2m2

reduce to the corresponding ones
in reference [12]

lim
L→∞

∫ L/2

−L/2

dz u
(i)
l1m1l2m2

(z) =

π
√

(2l1 + 1)(2l2 + 1)δl1l2δm10δm20u
(i)
l1

, (30)

where the coefficients u
(i)
l1

, for l1 = 0, 1, 2, 3, 4, are given

by equations (4.9–4.13) in reference [12]. It is important
to note that among the coefficients ul1m1l2m2

there are
terms which are nonzero in a slab-like geometry, but which
vanish in the bulk limit.

4 Magnetization and order parameters

Focusing on the structure of confined dipolar fluids, here
we are particularly interested in the occurrence of a spon-
taneous magnetization. In the slab geometry, which can
be considered as the limiting case of an oblate ellipsoidal
sample with vanishing aspect ratio, the demagnetization
field vanishes if the fluid sample is magnetized along a
spontaneously chosen direction within the xy-plane. For
such a type of magnetization the formation of various do-
mains can be excluded. Therefore the confined fluid with
the magnetization within the xy-plane is comparable to a
single domain bulk fluid in a needle-like volume with lon-
gitudinal magnetization. The free energies of these fluid
samples can be mapped onto each other [12]. The defini-
tion of the local magnetization is

M(z) = mρ(z)

∫
dωα(z, ω)m̂(ω). (31)
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By inserting the expansion in terms of the spherical har-
monics and performing the integration we obtain

M(z) =

(
4π

3

)1/2

mρ(z)






−
√

2 Re[α11(z)]
+
√

2 Im[α11(z)]
α10(z)




 . (32)

For Mz = 0, i.e., α10(z) = 0, the magnetization within
the xy-plane is measured by the order parameter

αxy(z) =

(
8π

3

)1/2 (
(Re[α11(z)])2 + (Im[α11(z)])2

)1/2

=

(
8π

3

)1/2

|α11(z)|, (33)

so that the modulus Mxy of the in-plane magnetization is

Mxy(z) = mρ(z)αxy(z). (34)

The higher coefficients of the orientational distribution
function α(z, ω) (Eq. (13)) may also be considered as lo-
cal orientational order parameters. Nonzero coefficients for
l = 2 indicate a certain type of ordering of the dipoles.
An especially interesting quantity is the order parameter
α20(z) that describes the orientation of dipole axes rela-
tive to the z-axis. This is related to the zz component of
the local quadrupole tensor as

Qzz(z) =

∫
dωα(z, ω)P2(cos θ) =

(
4π

5

)1/2

α20(z), (35)

where P2 is the second-order Legendre polynomial. Qzz =
1 corresponds to the perfect ordering of dipole axes nor-
mal to the walls while Qzz = −1/2 indicates the perfect
ordering along the directions in the xy-plane. Randomly
oriented dipoles correspond to Qzz = 0.

5 Euler-Lagrange equation

The equilibrium configuration characterized by ρ(z) and
α(z, ω) for given values of T and µ follows from minimizing
the total grand canonical functional with respect to ρ̂(z)
and the function α̂(z, ω)

β

A

δΩ

δρ̂(z)

∣∣∣∣∣
ρ̂=ρ, α̂=α

=ln ρ(z)+βµref
hs [{ρ(z)}]+

∫
dω α(z, ω)

× ln[4πα(z, ω)] + 2β
∑

l1,m1

αl1m1
(z)

∑

l2,m2

∫ L/2

−L/2

dz′ρ(z′)

×ul1m1l2m2
(z − z′)αl2m2

(z′) − βµ + βuw(z) = 0 (36)

and

β

A

δΩ

δα̂(z, ω)

∣∣∣∣∣
ρ̂=ρ, α̂=α

= ρ(z)(1 + ln[4πα(z, ω)]) − βκ(z)

+2βρ(z)

∫ L/2

−L/2

dz′ρ(z′)
∑

l1,m1

αl1m1
(z′)

∑

l2,m2

ul1m1l2m2

×(z − z′)Y ∗
l2m2

(ω) = 0, (37)

where µref
hs [{ρ̂(z)}] =

δF ref

hs
[{ρ̂(z)}]

δρ̂(z) is the chemical poten-

tial functional (first-order direct correlation function) of
the hard-sphere reference system (see App. A). The cor-
responding set of integral equations is discussed in Ap-
pendix C. As solutions of equations (36) and (37) ρ(z;T, µ)
and α(z, ω;T, µ) become functions of T and µ.

6 Phase equilibria and Kelvin equation

The phase coexistence curves µ(T ) and the coexisting den-
sities and orientational order parameters follow from re-
quiring the equality of the grand potentials for the coex-
isting phases I and II:

Ω[{ρ(I)(z;T, µ), α(I)(z, ω;T, µ)}, T, µ] =

Ω[{ρ(II)(z;T, µ), α(II)(z, ω;T, µ)}, T, µ]. (38)

The functions ρ(i)(z;T, µ) and α(i)(z, ω;T, µ) (i = I, II)
denote the corresponding equilibrium density and ori-
entational distribution functions obtained from equa-
tions (36) and (37). Equation (38) requires simulta-
neous solutions of the Euler-Lagrange equations (36)
and (37) for a wide range of temperatures and chem-
ical potentials. As mentioned in Section 1, we con-
sider three kinds of two-phase equilibria: isotropic-liquid–
isotropic-vapor, isotropic-vapor–ferromagnetic-liquid, and
isotropic-liquid–ferromagnetic-liquid. In order to estimate
in leading order of 1/L the location of the phase coexis-
tence curves, the Kelvin equation (see, e.g. Ref. [24] and
references therein) is used to obtain the chemical poten-
tial difference between the bulk phase points and the cor-
responding ones for slabs of thickness L at a given tem-
perature and for two identical confining walls

∆µ = µ(L) − µ(∞) =
2

L

γwI − γwII

ρI − ρII
= − 2

L

γI,II cos ΘI

ρI − ρII
,

(39)
where ρi (i = I, II) are the bulk densities of the coexist-
ing phases, γwi are the corresponding wall-fluid interfacial
tensions, γI,II is the surface tension between the coex-
isting fluid phases I and II, and ΘI = arccos[(γwII −
γwI)/γI,II ] is the contact angle of a drop of fluid I with
the wall (Young’s equation). In the slab-shaped system,
for a fluid which is in contact with two identical walls, the
surface tension γwi follows from the equilibrium density
ρ(z;T, µ) and oriental distribution α(z, ω;T, µ) profiles as

γwi =
1

2
lim

L→∞
(Lp + ΩL[{ρ(z;T, µ), α(z, ω;T, µ)}, T, µ]) ,

(40)
where p is the bulk pressure and ΩL is the grand poten-
tial per cross-sectional area A of the slab-like system of
transversal size L.

7 Results and discussion

In the following we shall use dimensionless quantities:
T ∗ = kBT/ǫ as reduced temperature, µ∗ = (µ −
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kBT ln(Λ3/σ3))/ǫ as reduced chemical potential, ρ̄∗ =
σ3

L

∫ L/2

−L/2
dzρ(z) as reduced averaged density in the pore,

which in a bulk phase equals the usual reduced density,
m∗ = m/(ǫσ3)1/2 as the reduced dipole moment, and
ǫ∗w = ǫw/ǫ for describing attractive walls (Eq. (7)).

For calculating the expansion of the dipole-dipole in-
teraction Mayer function we used a second-order approx-
imation. This choice restricts the expansion coefficients
αlm(z) of the orientational distribution function to those
with l ≤ 2 and thus |m| ≤ 2.

7.1 Phase diagrams

As a first step, on the basis of the corresponding bulk
theory we have determined the bulk phase diagrams of
Stockmayer fluids for different dipole moments. For com-
parison and as a reference the corresponding bulk phase
diagram is depicted in all figures discussing the phase dia-
grams in slabs. We note that the bulk phase diagrams pre-
sented here differ numerically from those in reference [12]
because there a fourth-order expansion with respect to the
corresponding Mayer functions has been used as well as a
temperature-dependent hard-sphere diameter for the ref-
erence system. Extending our present analysis of spatially
inhomogeneous system also to fourth order in that ex-
pansion is in principle possible but requires unreasonably
large technical efforts. The bulk phase diagrams within
the present approximation exhibit only minor quantita-
tive differences from those in reference [12].

For the dipole moment m∗ = 1.5 and the wall distance
L/σ = 10, Figure 1 presents our numerical results for
the phase diagrams in the chemical-potential–temperature
and the density-temperature planes. Figure 1 compares
the bulk phase diagrams with those of the slab for repul-
sive or attractive walls. For describing the attractive walls
(Eq. (7)) here and in the following we choose ǫ∗w = 1/2.
Figure 1(a) shows that below the triple-point tempera-
ture TTP the isotropic vapor coexists with the ferromag-
netic liquid. The confinement by repulsive walls shifts the
chemical-potential–temperature phase diagrams towards
higher chemical potentials relative to the bulk data. In the
case of attractive walls the shift is smaller and in the op-
posite direction. This figure also shows that for the chosen
parameters the Kelvin equation provides a good estimate
of these shifts. Between the temperatures TTP and TCP of
the triple-point temperature and of the liquid-vapor crit-
ical point, respectively, there are three possible phases:
the isotropic vapor, the isotropic liquid, and the ferro-
magnetic fluid. The first-order phase transition between
the isotropic liquid and ferromagnetic fluid turns into a
second-order phase transition above the tricritical tem-
perature TTCP . (For large µ∗ and at high ρ∗ orientation-
ally disordered or ferromagnetic solid phases appear [14],
which are not considered here.) We find that, compared
with the bulk, the temperature range for liquid-vapor and
liquid–ferromagnetic-fluid coexistence is narrowed by the
confinement, both for repulsive and attractive walls. Ac-
cording to Figure 1(b) at low temperatures (T < TTP )

Fig. 1. Phase diagrams of bulk and confined Stockmayer fluids
for m∗ = 1.5 and L/σ = 10 in (a) the chemical-potential–
temperature and (b) in the averaged density-temperature

plane; ρ̄∗ = σ3

L

R L/2

−L/2
dzρ(z) is the spatially averaged overall

number density. In (a) solid (bulk phase), dashed (attractive
wall, ǫ∗w = 1/2), and dash-dotted (repulsive wall) lines are
lines of first-order phase transitions. In (b) these curves en-
close two-phase regions. The dotted lines CL denote lines of
second-order phase transitions. CP, TCP, and TP denote the
liquid-vapor critical, the tricritical, and the triple point, respec-
tively. Three-phase coexistence at TP is associated with and
visible by breaks in the slope of the corresponding first-order
phase boundaries. The symbols + and ∗ indicate phase equi-
librium points predicted by the corresponding Kelvin equation
for attractive (a) and repulsive (r) walls, respectively.

the high-density ferromagnetic fluid coexists with the low-
density isotropic vapor. Above the triple-point tempera-
ture TTP , at low and medium densities two isotropic fluids
coexist, becoming identical above the liquid-vapor criti-
cal temperature TCP . At higher densities, the isotropic
liquid (with the lower density) and the ferromagnetic
fluid (with the higher density) are separated by first-order
phase transitions which turn into second-order phase tran-
sitions above the tricritical temperature TTCP . The crit-
ical line CL of the second-order phase transitions divides
the liquidlike thermodynamic states into an isotropic liq-
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Fig. 2. Phase diagrams of bulk and confined Stockmayer fluids
(as in Fig. 1) for m∗ = 1.5, L/σ = 4, and ǫ∗w = 1/2 in (a)
the chemical-potential–temperature and (b) averaged-density–
temperature plane.

uid phase and into a ferromagnetic fluid phase. In com-
parison with the bulk coexistence curves the shift of the
first-order coexistence region to lower densities is more
significant for repulsive than for attractive walls. The tri-
critical liquid densities are lowered by the confinement in
comparison with the corresponding bulk ones whereas the
tricritical vapor densities are increased. The liquid-vapor
critical density is lowered due to the confinement by repul-
sive walls and slightly increased in the case of attractive
walls. At a given temperature both confinements promote
the formation of the ferromagnetic phase at lower densi-
ties. These findings are in qualitative agreement with the
results of Gramzow and Klapp [3], but the shift of the co-
existence curves of confined systems relative to the bulk
ones is more significant than predicted by their homoge-
neous local density theory.

As shown in Figure 2, a stronger confinement (L/σ =
4) does not change the topology of the phase diagram.
However, in this case the shifts of the phase boundaries rel-
ative to the bulk ones are more pronounced. The temper-
ature interval TCP -TTP , within which liquid-vapor coexis-
tence is thermodynamically stable, becomes narrower with

increasing confinement. All critical temperatures (TCP ,
TTCP , TTP ) are lowered upon increasing the confinement.
(The lowering of the liquid-vapor critical temperature for
Stockmayer fluids with increasing confinement is in qual-
itative aggrement with the Gibbs ensemble Monte Carlo
simulation results of Richardi et al. [4].) For attractive
walls the critical density of the liquid-vapor equilibria does
not change significantly whereas it is reduced for repulsive
walls. Comparing our results for m∗ = 1.5 and L/σ = 4
with those of Gramzow and Klapp [3] we note that,
in contrast to their findings, in the chemical-potential–
temperature plane the first-order phase boundaries of the
bulk and of the confined systems do not intersect.

For L/σ = 10, increasing the dipole moment from
m∗ = 1.5 to m∗ = 2 changes the corresponding phase
diagrams shown in Figure 1 considerably and leads to
the phase diagram displayed in Figure 3. This increase of
the dipole moment causes the disappearance of the liquid-
vapor transitions for both the bulk and the confined sys-
tems. According to Figure 3(a) for this dipole moment
the phase boundaries of the bulk and of the confined sys-
tem with attractive walls do intersect. On the basis of
the Kelvin equation (Eq. (39)) this multiple crossing of
the ferromagnetic-fluid–isotropic-fluid (I = ff , II = if)
phase boundaries for the bulk and for the confined sys-
tem implies a nonmonotonic temperature dependence of
the surface tension difference γw,ff −γw,if and vice versa;
according to the full line in Figure 3(b) ρff − ρif > 0
varies monotonically as a function of temperature. (For
smaller dipole moments a similar crossing behavior has
been found by Gramzow and Klapp [3].) The inset in Fig-
ure 3(a) shows the independently calculated (Eq. (40))
surface tension difference and confirms that the aforemen-
tioned crossings of the bulk and film phase boundaries do
coincide with the changes of sign of γw,ff − γw,if at T(i)

and T(ii). Due to the second equation in equation (39), the
Kelvin equation turns into

∆µ = − 2

L

γff,if cos Θff

ρff − ρif
. (41)

Since γff,if is expected to decrease monotonically upon
increasing temperature, these crossings amount to a non-
monotonic temperature dependence of the contact angle
of the ferromagnetic fluid around 90◦. (For Θff = 90◦

the leading behavior of ∆µ is given by the contribution
∼ 1/L2.)

In the case of confinement with repulsive walls the
ferromagnetic-fluid–isotropic-fluid phase boundary is gen-
erally shifted to higher values of the chemical potential
as compared with its bulk counterpart. Confinement low-
ers the tricritical temperatures TTCP and there is no
significant difference between the tricritical temperatures
for systems with attractive and repulsive walls. As for
m∗ = 1.5 (Fig. 1(a)), also for m∗ = 2 and L/σ = 10 the
estimates obtained from the Kelvin equation are in good
agreement with the full phase equilibrium calculations.
Figure 3(b) shows how the two-phase region shrinks upon
confinement. If the liquid-vapor critical point has disap-
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Fig. 3. Phase diagrams of bulk and confined Stockmayer fluids
for m∗ = 2, L/σ = 10, and ǫ∗w = 1/2 in (a) the chemical-
potential–temperature and (b) averaged-density–temperature
plane. The line codes and the meaning of the symbols are the
same as in Figures 1 and 2. For this dipole strength the liquid-
vapor critical point has disappeared both in the bulk and in the
confined system. In (a) the attractive-wall confinement barely
shifts the phase boundary; nonetheless this shifted boundary
crosses the bulk one twice. Within the Kelvin equation for
the shift these crossings correspond to zeroes (i) and (ii) of
the independently calculated surface tension difference γw,ff −

γw,if (see the inset) which correspond to a contact angle Θff =
90◦ (see the main text).

peared in the bulk phase diagram, this holds also for the
confined system, independent of the character of the wall.

For m∗ = 2, upon decreasing the wall separation from
L/σ = 10 to L/σ = 4 the topology of the phase diagrams
does not change (compare Figs. 3 and 4). Figure 4(a)
shows that for repulsive walls the stronger confinement
leads to a larger shift of the phase boundary to higher
values of the chemical potentials. For attractive walls this
shift remains much smaller even for this narrow slab with
L/σ = 4. Different from the case m∗ = 1.5 (see Fig. 2(a)),
for m∗ = 2 two crossings of the bulk coexistence curve
with the phase boundary for attractive walls are clearly
visible. Their interpretation in terms of the Kelvin equa-
tion is less valid than for Figure 3(a) because due to the
small value L/σ = 4 subdominant terms in the expres-

Fig. 4. Phase diagrams of bulk and confined Stockmayer flu-
ids for m∗ = 2, L/σ = 4, and ǫ∗w = 1/2 in (a) the chemical-
potential–temperature and (b) averaged-density–temperature
plane. The line codes and the meaning of the symbols are the
same as in Figures 1-3. In (a) the crossing of the shifted phase
boundary for the attractive wall confinement with the bulk
phase boundary is more clearly visible than for L/σ = 10
shown in Figure 3(a).

sion for ∆µ become relevant. Figure 4(b) shows that en-
hancing the confinement causes a further shrinking of the
two-phase coexistence region. The tricritical temperatures
TTCP and densities ρTCP decrease upon reducing the wall
separation. This means that for smaller distances between
the walls the ferromagnetic-fluid–isotropic-fluid phase co-
existence occurs within a narrower range of the thermo-
dynamic variables.

In a recent publication Trasca and Klapp [7] have stud-
ied inter alia the second-order phase transition of strongly
coupled dipolar fluids confined to narrow slit pores. They
performed Monte Carlo simulations using purely repulsive
wall confinements and the dipolar soft-sphere model for
the particles. In confined systems, they have found that, at
a given temperature, with the decrease of the wall separa-
tion the paramagnetic-ferromagnetic phase transition den-
sity (averaged across the slit pore) decreases relative to the
corresponding bulk one. They found that the direction of
this shift is inconsistent with their very simple mean-field
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Fig. 5. Profiles of the number density ρ∗(z) ((a) and (b)),
preferential orientation α20(z) of the dipole axes (Eq. (14))
((c) and (d)), ferromagnetic order parameter αxy(z) (Eq. (33))
(e), and in-plane magnetization M∗

xy(z) = m∗ρ∗(z)αxy(z) (f)
of coexisting ferromagnetic liquid and isotropic vapor phases
for m∗ = 1.5, L/σ = 10, and T ∗ = 1.15, confined by repulsive
(r) (—) or attractive (a) (· · · ·, ǫ∗w = 1/2) walls.

theoretical predictions (see Eq. (3a) in Ref. [7]). Analyzing
the shifts of the second-order transition lines for the re-
pulsive wall confinements (see Figs. 3(b) and 4(b)) we find
that within the framework of our DFT at a given temper-
ature the critical averaged density decreases upon the de-
crease of the wall separation, which is in qualitative agree-
ment with the simulation findings of Trasca and Klapp [7].
(There is no possibility for a quantitative comparison be-
cause these Monte Carlo simulations were carried out for
a reduced dipole moment m∗ = 3; for such large values of
m∗ the quantitative reliability of the present DFT would
be reduced anyhow.)

7.2 Structural properties

In the following the structural properties of the coexisting
ferromagnetic fluid and isotropic gas phases are discussed.
Figure 5 shows the corresponding results for reduced
dipole moment m∗ = 1.5 and wall separation L/σ = 10 at
the reduced temperature T ∗ = 1.15. At this low temper-
ature the ferromagnetic fluid can be denoted as a liquid
(see Fig. 1(b)). (As a hint we note that for a given tem-
perature the chemical potential at two-phase coexistence
is different for attractive and repulsive walls, see Fig 1(a).)
Figure 5(a) shows that the confined ferromagnetic liquid

phase is strongly structured both for attractive and repul-
sive walls. In the case of confinement by attractive walls
the contact value ρ∗w ≃ 19.8 of the reduced density (i.e.,
at |z| = (L − σ)/2) is very high (not displayed on the
scale of the figure) which refers to a strong adsorption on
the walls. The density profiles of the coexisting isotropic
gases are displayed in Figure 5(b). For the attractive-wall
case the contact value of the density is ρ∗w ≃ 0.55 which
indicates a visible spatial inhomogeneity in the vicinity of
the walls. However, in the case of repulsive walls, at this
low temperature the density of the vapor phase does not
show any detectable inhomogenity. The behavior of the
preferential orientation α20(z) shown in Figure 5(c) tells
that in the liquid phase the dipole axes are preferentially
oriented parallel to the walls throughout the pore for both
types of confinements. The ferromagnetic ordering of the
particles in the liquid phase is confirmed by the variation
of the order parameter αxy(z) (Eq. (33)) which can be
seen in Figure 5(e) which describes the net orientation
of the dipoles parallel to the walls, keeping in mind that
for the orientational order parameter we find α10(z) = 0
(Mz = 0, see Eq. (32)) throughout of the pore. We note
that, for all confined fluid phases studied here we found
that α10(z) = 0, i.e., throughout the pores the z com-
ponent of the magnetization Mz is zero. Figure 5(f) dis-
plays the corresponding magnetization Mxy(z) (Eq. (34)),
which shows strong spatial inhomogeneities for both types
of confinements induced by the structure of ρ(z). (For the
attractive walls the contact value of the magnetization is
Mxy,w ≃ 25.7.) For the vapor phase we find αxy(z) = 0
for both attractive and repulsive confinements, which to-
gether with Mz = 0 implies that the vapor phase is an
isotropic phase. However, in Figure 5(d) the order param-
eter α20(z) shows that close to the walls there is a slight
ordering in the vapor phases as well. There the ordering is
more pronounced for the confinement by attractive walls
than by repulsive walls. In the vapor phase, close to the
attractive walls the dipole axes are preferentially ordered
parallel to the walls (α20 < 0), but the amplitude of the
orientation is much smaller than in the coexisting liquid
phase (Fig. 5(d)). Between this layer of parallel orientation
and the orientationally disordered interior of the pore (i.e.,
α20(z) is close to zero), there is a layer with preferential
orientation perpendicular to the wall (α20 > 0, Fig. 5(d)).
With respect to the orientational order, our DFT results
are consistent with those of Gramzow and Klapp [3] but
they show stronger spatial inhomogenities which is borne
out by using a more sophisticated free-energy functional
for the hard-sphere reference system.

For m∗ = 1.5 and T ∗ = 1.15, upon decreasing the
wall separation from L/σ = 10 to L/σ = 4 the density
and orientational distributions change significantly. Fig-
ure 6(a) shows that for both attractive and repulsive con-
finements the ferromagnetic liquid phases become more
structured. Moreover, the confinement by attractive walls
induces more ordered structures than by the correspond-
ing repulsive ones. The density profiles for the coexisting
isotropic vapor phase are displayed in Figure 6(b), show-
ing that only the attractive walls induce a spatial inho-
mogeneity in the density distribution of the isotropic va-
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Fig. 6. Same as Figure 5 for L/σ = 4.

por. Figure 6(c) shows that in the liquid phase the extent
of the orientation of the dipole axes parallel to the walls
is comparable with that in the wider (L/σ = 10) pore
but it varies more strongly across the pore. According to
Figure 6(d) the same conclusion holds for the structural
properties of the confined vapor phase; since the vapor
phase is isotropic, this shows that the preferential order-
ing parallel and perpendicular to the walls does not hinge
on the formation of ferromagnetic order. From Figure 6(e)
one infers that the in-plane ferromagnetic order parame-
ter of the liquid phase for L/σ = 4 is comparable with
that for L/σ = 10. However, the thinner pore exhibits a
stronger magnetization and more pronounced spatial vari-
ations (Fig. 6(f)).

Figure 7 displays the structural properties for the wide
pore L/σ = 10 at the higher temperature T ∗ = 1.6 and
for an increased dipole moment m∗ = 2. Compared with
Figure 5 (T ∗ = 1.15, m∗ = 1.5) there are no qualita-
tive differences. The quantitative differences concern the
vapor density, which is lower due to the higher temper-
ature (Fig. 7(b)), and the magnetization of the liquid
phase, which is higher due to the increased dipole strength
(Fig. 7(f)). The occurrence of preferential ordering parallel
to the walls in the vapor phase (α20(z) < 0, Fig. 7(d)) is in
line with the findings of Gramzow and Klapp [3]; however
their approach does not render the preferential ordering
perpendicular to the walls (α20(z) > 0) in the subsequent
layer towards the interior of the pore. But this preferential
orientation is about a factor of ten smaller (Fig. 7(d)) as
compared with the case shown in Figure 5(d).

For m∗ = 2 and T ∗ = 1.6, decreasing the wall sep-
aration from L/σ = 10 to L/σ = 4 leads to a signif-
icant increase of both the liquid and the vapor densities
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(Figs. 8(a) and (b)) as well as to more pronounced density
oscillation. The preferential orientional ordering is similar
for the narrow (Figs. 7(c)-(e)) and the wide (Figs. 8(c)-(e))
pore. The magnetization is stronger in the more confined
pore (Fig. 8(f)); this and the more pronounced spatial
variation is caused by the corresponding behavior of the
underlying number density (Fig. 8(a)). The vapor phase
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does not acquire a ferromagnetic order even in the narrow
pore, i.e., αxy(z) = 0 for the vapor phase.

8 Summary

In the present study of the phase behavior and structural
ordering of confined Stockmayer fluids (Eq. (1)) the fol-
lowing main results have been obtained.

1) We have applied an extension of the modified mean-
field density functional theory to determine the phase be-
havior and the structure of Stockmayer fluids in slit-like
pores formed by either attractive (Eq. (7)) or repulsive
(Eq. (6)) walls at wall separations L/σ = 10 and L/σ = 4,
for reduced dipole moments m∗ = 1.5 and m∗ = 2, and
for a reduced wall strength ǫ∗w = 1/2. This system exhibits
three distinct fluid phases: isotropic vapor, isotropic liq-
uid, and ferromagnetic fluid.

2) For the reduced dipole moment m∗ = 1.5 we have
found isotropic-liquid–isotropic-vapor, ferromagnetic-
fluid–isotropic-vapor, and ferromagnetic-fluid–isotropic-
liquid first-order phase separations. The confinement
by repulsive walls shifts the phase boundaries in the
chemical-potential–temperature plane towards higher
chemical potentials while attractive walls lead to a shift
towards lower chemical potentials relative to the corre-
sponding bulk data. The decrease of the wall separation
from L/σ = 10 to L/σ = 4 does not change the topology
of the phase diagrams, but in this case the shifts of the
phase boundaries relative to the bulk ones are more
pronounced (see Figs. 1 and 2). The increase of the
dipole moment from m∗ = 1.5 to m∗ = 2 erases the
isotropic-liquid–isotropic-vapor phase transitions for both
the confined and the bulk systems. We have found that
for this stronger dipole moment only the phase boundary
of the confined system with repulsive walls is significantly
shifted relative to the bulk one (see Figs. 2 and 3). The
phase boundaries of the bulk and of the confined system
with attractive walls do intersect without a significant
shift of the phase boundaries of the confined system
relative to the bulk one.

3) We have shown that in the temperature–chemical-
potential plane the Kelvin equation provides a good esti-
mate of the confinement-induced shift of the chemical po-
tential for isotropic-vapor–ferromagnetic-fluid (Fig. 1(a))
and isotropic-fluid–ferromagnetic-fluid (Fig. 3(a)) phase
coexistence. The multiple crossings of the isotropic-fluid–
ferromagnetic-fluid phase boundaries in the temperature–
chemical-potential plane correspond to a nonmonotonic
temperature dependence of the contact angle of a drop of
ferromagnetic fluid on a single wall.

4) On the basis of our DFT approach, we have found
that the number densities ρ(z) in the confined liquid-
like phases (coexisting with the corresponding vapor-like
phases) for both dipole moments (m∗ = 1.5 and m∗ = 2)
and for both confinements (L/σ = 10 and L/σ = 4),
with either attractive or repulsive walls, are strongly
structured (see Figs. 5(a)-8(a)). The figures for the or-
der parameter α20(z) (Eq. (14)) for preferential orienta-
tion of the dipole axes show that in the liquid-like phases

the dipole axes are preferentially oriented parallel to the
walls throughout the pore for both attractive and re-
pulsive walls as well as for both sizes of confinements
(see Figs. 5(c)-8(c)). The ferromagnetic ordering of the
dipoles in the confined liquidlike phases is displayed by
the variation of the ferromagnetic order parameter αxy

(see Eq. (33) and Figs. 5(e)-8(e)) which, together with
the result Mz(z) ≡ 0, describes the net orientation of
the dipoles parallel to the walls. The corresponding mag-
netizations Mxy(z) = mρ(z)αxy(z) are displayed in Fig-
ures 5(f)-8(f). Since αxy(z) = 0 and α10(z) = 0 through-
out the pore for the vapor-like phases (at coexistence with
the ferromagnetic liquid-like phases), they are completely
isotropic. Attractive-wall confinements give rise to strong
adsorption at the walls even in the vaporlike phases (see
Figs. 5(b)-8(b)). In the vaporlike phases, close to the at-
tractive walls a slight preferential parallel ordering has
been found. Between the layer of this preferential parallel
orientation and the orientationally disordered interior of
the pore a layer with preferential perpendicular orienta-
tion has been detected (see Figs. 5(d)-8(d)).

I. Szalai acknowledges useful discussions with R. Roth and L.
Harnau. Financial support from the Hungarian Scientific Re-
search Fund (Grant No. OTKA K61314) is also acknowledged.

Appendix A. Fundamental-measure theory

One of the main limitations of the original version of
fundamental-measure theory is that the underlying bulk
fluid equation of state reduces to the Percus-Yevick com-
pressibility equation. As it is well known, within this ap-
proximation the contact value of the density profile of a
one-component hard-sphere fluid at a planar wall is sig-
nificantly overestimated at high bulk densities. In order
to improve the quantitative accuracy and to maintain in-
ternal consistency, following Roth et al. [17] and Tara-
zona [25], here we apply a fundamental-measure theory
based on the Carnahan-Starling equation of state. Within
this approach the hard-sphere excess free-energy density
functional is given in terms of weighted densities as

fhs =
1

β
Φ({nα(z)}), (A.1)

where

Φ = −n0 ln(1 − n3) +
n1n2 − n1 · n2

1 − n3

+(n3
2 − 3n2n2 · n2)

n3 + (1 − n3)
2 ln(1 − n3)

36πn2
3(1 − n3)2

. (A.2)

In reference [26] it is shown that the weighted densities in
the present slab geometry are given as

nα(z) =

∫ σ/2

−σ/2

dz′ρ̂(z + z′)w(α)(z′), (A.3)
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where the reduced weight functions w(i) as functions of z
are

w(0) =
1

σ
, w(1) =

1

2
, w(2) =πσ, w(3) =π((σ/2)2−z2),

w
(1) =

zπ

σ
ez , w

(2) = 2πzez . (A.4)

The chemical potential functional (first-order direct cor-
relation function) of the reference hard-sphere system is

βµhs[{ρ̂(z)}] = β
δFhs[{ρ̂(z)}]

δρ̂(z)

=

5∑

α=0

∫ L/2

−L/2

dz′
∂Φ[{ρ̂(z′)}]

∂nα
w(α)(z′ − z),

(A.5)

where the corresponding derivatives are

Φ0 =
∂Φ

∂n0
= − ln(1 − n3),

Φ1 =
∂Φ

∂n1
=

n2

1 − n3
,

Φ2 =
∂Φ

∂n2
=

n1

1 − n3

+(n2
2 − n2n2)

(n3 + (1 − n3)
2 ln(1 − n3))

12πn2
3(1 − n3)2

,

Φ3 =
∂Φ

∂n3
=

n0

1 − n3
+

n1n2 − n1n2

(1 − n3)2

+(n3
2 − 3n2n2n2)

(
2 + n3(n3 − 5)

36πn2
3(1 − n3)3

+
ln(1 − n3)

18πn3
3

)
,

Φ4 =
∂Φ

∂n1
= − n2

1 − n3
,

Φ5 =
∂Φ

∂n2
= − n1

1 − n3

−n2n2
n3 + (1 − n3)

2 ln(1 − n3)

6πn2
3(1 − n3)2

. (A.6)

In the summation (Eq. (A.5)) α = 4, 5 refers to the vec-
torial weight functions w

(1) and w
(2), respectively.

Appendix B. Calculation of the coefficients

A
(i)
l1m1l2m2

(x)

Solving the set of integral equations (36) and (37) (see also
Eqs. (C.1) and (C.2)) requires to determine the functions

u
(i)
l1m1l2m2

(z) (see Eq. (27)) which are based on the coef-

ficients A
(i)
l1m1l2m2

(x) (see Eqs. (28) and (29)). By using

equation (29) we have calculated these coefficients and in
the following we provide all coefficients which are nonzero

for i, l1, l2 = 0, 1, 2:

A
(0)
0000 = 8π2,

A
(1)
1010 =

8π2

3
(3x2 − 1),

A
(1)

1111
= −4π2

3
(3x2 − 1),

A
(2)
0000 =

16π2

3
,

A
(2)
0020 =

8
√

5π2

15
(3x2 − 1),

A
(2)
2020 =

8π2

5
(9x4 − 8x2 + 1),

A
(2)

2121
=

8π2

15
(−18x4 + 15x2 − 1),

A
(2)

2222
=

4π2

15
(9x4 − 6x2 + 1), (B.1)

where

x ≡ cos θ12 =
z√

R2 + z2
. (B.2)

The coefficients A
(i)
l1m1l2m2

are symmetric

A
(i)
l1m1l2m2

(x) = A
(i)
l2m2l1m1

(x), (B.3)

so that the functions

u
(i)
l1m1l2m2

(z) = u
(i)
l2m2l1m1

(z) (B.4)

are symmetric, too, which simplifies equations (36)
and (37). We note that the integral in equation (28)
splits into two parts due to the Heaviside function
Θ(R2 + z2 − σ2):

∫ ∞

0

dR Θ(R2 + z2 − σ2)g(R, z) = Θ(|z| − σ)

×
∫ ∞

0

dRg(R, z)+Θ(σ−|z|)
∫ ∞

√
|σ2−z2|

dRg(R, z). (B.5)

Appendix C. Calculation of the density and

orientational profiles

Equations (36) and (37) lead to coupled integral equa-
tions for ρ(z) and α(z, ω) (or αlm(z), see Eq. (13); here
we suppress their dependences on T and µ)

ρ(z) = exp
[
− βµref

hs [{ρ(z)}]−
∫

dωα(z, ω) ln[4πα(z, ω)]

−2β
∑

l1,m1

αl1m1
(z)

∑

l2,m2

∫ L/2

−L/2

dz′ρ(z′)ul1m1l2m2

×(z − z′)αl2m2
(z′) + βµ − βuw(z)

]
. (C.1)
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α(z, ω) =

exp

2

4−2β

Z L/2

−L/2

dz′ρ(z′)
X

l1,m1

αl1m1
(z′)

X

l2,m2

ul1m1l2m2
(z − z′)Y ∗

l2m2
(ω)

3

5

Z

dω exp

2

4−2β

Z L/2

−L/2

dz′ρ(z′)
X

l1,m1

αl1m1
(z′)

X

l2,m2

ul1m1l2m2
(z − z′)Y ∗

l2m2
(ω)

3

5

, (C.2)

αl1m1
(z) =

Z

dωY ∗

l1m1
(ω) exp

2

4−2β

Z L/2

−L/2

dz′ρ(z′)
X

l2,m2

αl2m2
(z′)

X

l3,m3

ul2m2l3m3
(z − z′)Y ∗

l3m3
(ω)

3

5

Z

dω exp

2

4−2β

Z L/2

−L/2

dz′ρ(z′)
X

l2,m2

αl2m2
(z′)

X

l3,m3

ul2m2l3m3
(z − z′)Y ∗

l3m3
(ω)

3

5

. (C.3)

Elementary calculations lead from equation (37) to the
following equation:

see equation (C.2) above

which fulfills the normalization requirement in equa-
tion (9). Using the expansion of α(z, ω) in terms of spher-
ical harmonics (Eq. (13)) one obtains for the coefficients
αlm(z) (Eq. (14))

see equation (C.3) above.

Equations (C.1) and (C.3) are a set of coupled integral
equations which are solved iteratively for the density pro-
file ρ(z) and the coefficients αlm(z) of the orientational
distribution. To this end, in equation (C.1) the orienta-
tional entropy term must be expressed in terms of the
coefficients αlm(z). Using equation (C.2), after some cal-
culations one arrives at

∫
dωα(z, ω) ln[4πα(z, ω)] =

ln[4π/C(z)] − 2β
∑

l1,m1

∑

l2,m2

αl1m1
(z)

×
∫ L/2

−L/2

dz ρ(z′)ul1m1l2m2
(z − z′)αl2m2

(z′), (C.4)

where

C(z) =

∫
dω exp



−2β

∫ L/2

−L/2

dz′ρ(z′)
∑

l1,m1

αl1,m1
(z′)

×
∑

l2,m2

ul1m1l2m2
(z − z′)Y ∗

l2m2
(ω)



 . (C.5)
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