275 research outputs found

    Deformation correlations, stress field switches and evolution of an orogenic intersection: the Pan-African Kaoko-Damara orogenic junction, Namibia

    Get PDF
    Age calibrated deformation histories established by detailed mapping and dating of key magmatic time markers are correlated across all tectono-metamorphic provinces in the Damara Orogenic System. Correlations across structural belts result in an internally consistent deformation framework with evidence of stress field rotations with similar timing, and switches between different deformation events. Horizontal principle compressive stress rotated clockwise ∼180° in total during Kaoko Belt evolution, and ∼135° during Damara Belt evolution. At most stages, stress field variation is progressive and can be attributed to events within the Damara Orogenic System, caused by changes in relative trajectories of the interacting Rio De La Plata, Congo, and Kalahari Cratons. Kaokoan orogenesis occurred earliest and evolved from collision and obduction at ∼590 Ma, involving E–W directed shortening, progressing through different transpressional states with ∼45° rotation of the stress field to strike-slip shear under NW–SE shortening at ∼550–530 Ma. Damaran orogenesis evolved from collision at ∼555–550 Ma with NW–SE directed shortening in common with the Kaoko Belt, and subsequently evolved through ∼90° rotation of the stress field to NE–SW shortening at ∼512–508 Ma. Both Kaoko and Damara orogenic fronts were operating at the same time, with all three cratons being coaxially convergent during the 550–530 Ma period; Rio De La Plata directed SE against the Congo Craton margin, and both together over-riding the Kalahari Craton margin also towards the SE. Progressive stress field rotation was punctuated by rapid and significant switches at ∼530–525 Ma, ∼508 Ma and ∼505 Ma. These three events included: (1) Culmination of main phase orogenesis in the Damara Belt, coinciding with maximum burial and peak metamorphism at 530–525 Ma. This occurred at the same time as termination of transpression and initiation of transtensional reactivation of shear zones in the Kaoko Belt. Principle compressive stress switched from NW–SE to NNW–SSE shortening in both Kaoko and Damara Belts at this time. This marks the start of Congo-Kalahari stress field overwhelming the waning Rio De La Plata-Congo stress field, and from this time forward contraction across the Damara Belt generated the stress field governing subsequent low-strain events in the Kaoko Belt. (2) A sudden switch to E–W directed shortening at ∼508 Ma is interpreted as a far-field effect imposed on the Damara Orogenic System, most plausibly from arc obduction along the orogenic margin of Gondwana (Ross-Delamerian Orogen). (3) This imposed stress field established a N–S extension direction exploited by decompression melts, switch to vertical shortening, and triggered gravitational collapse and extension of the thermally weakened hot orogen core at ∼505 Ma, producing an extensional metamorphic core complex across the Central Zone

    The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India

    Get PDF
    [1] Geothermobarometric together with micro- and macro-structural data indicate ductile flow in the metamorphic core of the Himalaya in the Garhwal region of India. Peak metamorphic pressure and temperature increase dramatically across the Main Central Thrust (MCT) from ~5 kbar and ~550°C in the Lesser Himalayan Crystalline Sequence (LHCS) to ~14 kbar and ~850°C at ~3 km above the MCT in the Greater Himalayan Sequence (GHS). Pressures within the GHS then decrease upsection to ~8 kbar while temperatures remain nearly constant at ~850°C up to the structurally overlying South Tibetan Detachment (STD). The GHS exhibits sheath fold geometries are indicative of high degrees of ductile flow. Overprinting ductile structures are two populations of extensional conjugate fractures and normal faults oriented both parallel and perpendicular to the orogen. These fractures crosscut major tectonic boundaries in the region such as the MCT and STD, and are found throughout the LHCS, GHS, and Tethyan Sedimentary Sequence (TSS). The thermobarometric and metamorphic observations are consistent with a form of channel flow. However, channel flow does not account for exhumational structures that formed above the brittle-ductile transition. To explain all of the features seen in the metamorphic core of the Garhwal region of the Himalaya, both the theories of channel flow and critical taper must be taken into account. Channel flow can explain the exhumation of the GHS from the middle crust to the brittle-ductile transition. The most recent extensional deformation is consistent with a supercritical wedge

    Reconciling Himalayan midcrustal discontinuities: The Main Central thrust system

    Get PDF
    The occurrence of thrust-sense tectonometamorphic discontinuities within the exhumed Himalayan metamorphic core can be explained as part of the Main Central thrust system. This imbricate thrust structure, which significantly thickened the orogenic midcrustal core, comprises a series of thrust-sense faults that all merge into a single detachment. The existence of these various structures, and their potential for complex overprinting along the main detachment, may help explain the contention surrounding the definition, mapping, and interpretation of the Main Central thrust. The unique evolution of specific segments of the Main Central thrust system along the orogen is interpreted to be a reflection of the inherent basement structure and ramp position, and structural level of exposure of the mid-crust. This helps explain the variation in the timing and structural position of tectonometamorphic discontinuities along the length of the mountain belt

    Developing an inverted Barrovian sequence; insights from monazite petrochronology

    Get PDF
    In the Himalayan region of Sikkim, the well-developed inverted metamorphic sequence of the Main Central Thrust (MCT) zone is folded, thus exposing several transects through the structure that reached similar metamorphic grades at different times. In-situ LA-ICP-MS U–Th–Pb monazite ages, linked to pressure–temperature conditions via trace-element reaction fingerprints, allow key aspects of the evolution of the thrust zone to be understood for the first time. The ages show that peak metamorphic conditions were reached earliest in the structurally highest part of the inverted metamorphic sequence, in the Greater Himalayan Sequence (GHS) in the hanging wall of the MCT. Monazite in this unit grew over a prolonged period between ~37 and 16 Ma in the southerly leading-edge of the thrust zone and between ~37 and 14.5 Ma in the northern rear-edge of the thrust zone, at peak metamorphic conditions of ~790 ◦C and 10 kbar. Monazite ages in Lesser Himalayan Sequence (LHS) footwall rocks show that identical metamorphic conditions were reached ~4–6 Ma apart along the ~60 km separating samples along the MCT transport direction. Upper LHS footwall rocks reached peak metamorphic conditions of ~655 ◦C and 9 kbar between ~21 and 16 Ma in the more southerly-exposed transect and ~14.5–12 Ma in the northern transect. Similarly, lower LHS footwall rocks reached peak metamorphic conditions of ~580 ◦C and 8.5 kbar at ~16 Ma in the south, and 9–10 Ma in the north. In the southern transect, the timing of partial melting in the GHS hanging wall (~23–19.5 Ma) overlaps with the timing of prograde metamorphism (~21 Ma) in the LHS footwall, confirming that the hanging wall may have provided the heat necessary for the metamorphism of the footwall. Overall, the data provide robust evidence for progressively downwards-penetrating deformation and accretion of original LHS footwall material to the GHS hanging wall over a period of ~5 Ma. These processes appear to have occurred several times during the prolonged ductile evolution of the thrust. The preserved inverted metamorphic sequence therefore documents the formation of sequential ‘paleothrusts’ through time, cutting down from the original locus of MCT movement at the LHS–GHS protolith boundary and forming at successively lower pressure and temperature conditions. The petrochronologic methods applied here constrain a complex temporal and thermal deformation history, and demonstrate that inverted metamorphic sequences can preserve a rich record of the duration of progressive ductile thrusting

    Post-orogenic shoshonitic magmas of the Yzerfontein pluton, South Africa: the 'smoking gun' of mantle melting and crustal growth during Cape granite genesis?

    Get PDF
    The post-orogenic Yzerfontein pluton, in the Saldania Belt of South Africa was constructed through numerous injections of shoshonitic magmas. Most magma compositions are adequately modelled as products of fractionation, but the monzogranites and syenogranites may have a separate origin. A separate high-Mg mafic series has a less radiogenic mantle source. Fine-grained magmatic enclaves in the intermediate shoshonitic rocks are autoliths. The pluton was emplaced between 533 ± 3 and 537 ± 3 Ma (LASF-ICP-MS U–Pb zircon), essentially synchronously with many granitic magmas of the Cape Granite Suite (CGS). Yzerfontein may represent a high-level expression of the mantle heat source that initiated partial melting of the local crust and produced the CGS granitic magmas, late in the Saldanian Orogeny. However, magma mixing is not evident at emplacement level and there are no magmatic kinships with the I-type granitic rocks of the CGS. The mantle wedge is inferred to have been enriched during subduction along the active continental margin. In the late- to post-orogenic phase, the enriched mantle partially melted to produce heterogeneous magma batches, exemplified by those that formed the Yzerfontein pluton, which was further hybridized through minor assimilation of crustal materials. Like Yzerfontein, the small volumes of mafic rocks associated with many batholiths, worldwide, are probably also lowvolume, high-level expressions of crustal growth through the emplacement of major amounts of mafic magma into the deep crust.IS

    Photograph of the Month

    No full text
    Editorialhttp://www.elsevier.com/wps/find/journaldescription.cws_home/539/description#descriptio
    • …
    corecore