125 research outputs found

    Quantitative Measurement of Pathogen-Specific Human Memory T cell Repertoire Diversity Using a CDR3 beta-specific Microarray

    Get PDF
    BACKGROUND: Providing quantitative microarray data that is sensitive to very small differences in target sequence would be a useful tool in any number of venues where a sample can consist of a multiple related sequences present in various abundances. Examples of such applications would include measurement of pseudo species in viral infections and the measurement of species of antibodies or T cell receptors that constitute immune repertoires. Difficulties that must be overcome in such a method would be to account for cross-hybridization and for differences in hybridization efficiencies between the arrayed probes and their corresponding targets. We have used the memory T cell repertoire to an influenza-derived peptide as a test case for developing such a method. RESULTS: The arrayed probes were corresponded to a 17 nucleotide TCR-specific region that distinguished sequences differing by as little as a single nucleotide. Hybridization efficiency between highly related Cy5-labeled subject sequences was normalized by including an equimolar mixture of Cy3-labeled synthetic targets representing all 108 arrayed probes. The same synthetic targets were used to measure the degree of cross hybridization between probes. Reconstitution studies found the system sensitive to input ratios as low as 0.5% and accurate in measuring known input percentages (R2 = 0.81, R = 0.90, p \u3c 0.0001). A data handling protocol was developed to incorporate the differences in hybridization efficiency. To validate the array in T cell repertoire analysis, it was used to analyze human recall responses to influenza in three human subjects and compared to traditional cloning and sequencing. When evaluating the rank order of clonotype abundance determined by each method, the approaches were not found significantly different (Wilcoxon rank-sum test, p \u3e 0.05). CONCLUSION: This novel strategy appears to be robust and can be adapted to any situation where complex mixtures of highly similar sequences need to be quantitatively resolved

    Selective Enrichment Media Bias the Types of Salmonella enterica Strains Isolated from Mixed Strain Cultures and Complex Enrichment Broths

    Get PDF
    For foodborne outbreak investigations it can be difficult to isolate the relevant strain from food and/or environmental sources. If the sample is contaminated by more than one strain of the pathogen the relevant strain might be missed. In this study mixed cultures of Salmonella enterica were grown in one set of standard enrichment media to see if culture bias patterns emerged. Nineteen strains representing four serogroups and ten serotypes were compared in four-strain mixtures in Salmonella-only and in cattle fecal culture enrichment backgrounds using Salmonella enrichment media. One or more strain(s) emerged as dominant in each mixture. No serotype was most fit, but strains of serogroups C2 and E were more likely to dominate enrichment culture mixtures than strains of serogroups B or C1. Different versions of Rappaport-Vassiliadis (RV) medium gave different patterns of strain dominance in both Salmonella-only and fecal enrichment culture backgrounds. The fittest strains belonged to serogroups C1, C2, and E, and included strains of S. Infantis, S. Thompson S. Newport, S. 6,8:d:-, and S. Give. Strains of serogroup B, which included serotypes often seen in outbreaks such as S. Typhimurium, S. Saintpaul, and S. Schwarzengrund were less likely to emerge as dominant strains in the mixtures when using standard RV as part of the enrichment. Using a more nutrient-rich version of RV as part of the protocol led to a different pattern of strains emerging, however some were still present in very low numbers in the resulting population. These results indicate that outbreak investigations of food and/or other environmental samples should include multiple enrichment protocols to ensure isolation of target strains of Salmonella

    The Use of Flagella and Motility for Plant Colonization and Fitness by Different Strains of the Foodborne Pathogen Listeria monocytogenes

    Get PDF
    The role of flagella and motility in the attachment of the foodborne pathogen Listeria monocytogenes to various surfaces is mixed with some systems requiring flagella for an interaction and others needing only motility for cells to get to the surface. In nature this bacterium is a saprophyte and contaminated produce is an avenue for infection. Previous studies have documented the ability of this organism to attach to and colonize plant tissue. Motility mutants were generated in three wild type strains of L. monocytogenes by deleting either flaA, the gene encoding flagellin, or motAB, genes encoding part of the flagellar motor, and tested for both the ability to colonize sprouts and for the fitness of that colonization. The motAB mutants were not affected in the colonization of alfalfa, radish, and broccoli sprouts; however, some of the flaA mutants showed reduced colonization ability. The best colonizing wild type strain was reduced in colonization on all three sprout types as a result of a flaA deletion. A mutant in another background was only affected on alfalfa. The third, a poor alfalfa colonizer was not affected in colonization ability by any of the deletions. Fitness of colonization was measured in experiments of competition between mixtures of mutant and parent strains on sprouts. Here the flaA and motAB mutants of the three strain backgrounds were impaired in fitness of colonization of alfalfa and radish sprouts, and one strain background showed reduced fitness of both mutant types on broccoli sprouts. Together these data indicate a role for flagella for some strains to physically colonize some plants, while the fitness of that colonization is positively affected by motility in almost all cases

    Short-term changes in ultrasound tomography measures of breast density and treatment-associated endocrine symptoms after tamoxifen therapy

    Get PDF
    Although breast density decline with tamoxifen therapy is associated with greater therapeutic benefit, limited data suggest that endocrine symptoms may also be associated with improved breast cancer outcomes. However, it is unknown whether endocrine symptoms are associated with reductions in breast density after tamoxifen initiation. We evaluated treatment-associated endocrine symptoms and breast density change among 74 women prescribed tamoxifen in a 12-month longitudinal study. Treatment-associated endocrine symptoms and sound speed measures of breast density, assessed via novel whole breast ultrasound tomography (m/s), were ascertained before tamoxifen (T0) and at 1-3 (T1), 4-6 (T2), and 12 months (T3) after initiation. CYP2D6 status was genotyped, and tamoxifen metabolites were measured at T3. Using multivariable linear regression, we estimated mean change in breast density by treatment-associated endocrine symptoms adjusting for age, race, menopausal status, body mass index, and baseline density. Significant breast density declines were observed in women with treatment-associated endocrine symptoms (mean change (95% confidence interval) at T1:-0.26 m/s (-2.17,1.65); T2:-2.12 m/s (-4.02,-0.22); T3:-3.73 m/s (-5.82,-1.63); p-trend = 0.004), but not among women without symptoms (p-trend = 0.18) (p-interaction = 0.02). Similar declines were observed with increasing symptom frequency (p-trends for no symptoms = 0.91; low/moderate symptoms = 0.03; high symptoms = 0.004). Density declines remained among women with detectable tamoxifen metabolites or intermediate/efficient CYP2D6 metabolizer status. Emergent/worsening endocrine symptoms are associated with significant, early declines in breast density after tamoxifen initiation. Further studies are needed to assess whether these observations predict clinical outcomes. If confirmed, endocrine symptoms may be a proxy for tamoxifen response and useful for patients and providers to encourage adherence

    Mutations in CPAMD8 cause a unique form of autosomal-recessive anterior segment dysgenesis

    Get PDF
    Anterior segment dysgeneses (ASDs) comprise a spectrum of developmental disorders affecting the anterior segment of the eye. Here, we describe three unrelated families affected by a previously unclassified form of ASD. Shared ocular manifestations include bilateral iris hypoplasia, ectopia lentis, corectopia, ectropion uveae, and cataracts. Whole-exome sequencing and targeted Sanger sequencing identified mutations in CPAMD8 (C3 and PZP-like alpha-2-macroglobulin domain-containing protein 8) as the cause of recessive ASD in all three families. A homozygous missense mutation in the evolutionarily conserved alpha-2-macroglobulin (A2M) domain of CPAMD8, c.4351T>C (p. Ser1451Pro), was identified in family 1. In family 2, compound heterozygous frameshift, c.2352_2353insC (p.Arg785Glnfs∗23), and splice-site, c.4549-1G>A, mutations were identified. Two affected siblings in the third family were compound heterozygous for splice-site mutations c.700+1G>T and c.4002+1G>A. CPAMD8 splice-site mutations caused aberrant pre-mRNA splicing in vivo or in vitro. Intriguingly, our phylogenetic analysis revealed rodent lineage-specific CPAMD8 deletion, precluding a developmental expression study in mice. We therefore investigated the spatiotemporal expression of CPAMD8 in the developing human eye. RT-PCR and in situ hybridization revealed CPAMD8 expression in the lens, iris, cornea, and retina early in development, including strong expression in the distal tips of the retinal neuroepithelium that form the iris and ciliary body, thus correlating CPAMD8 expression with the affected tissues. Our study delineates a unique form of recessive ASD and defines a role for CPAMD8, a protein of unknown function, in anterior segment development, implying another pathway for the pathogenicity of ASD

    The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

    Full text link
    • …
    corecore