464 research outputs found
Some Studies on Crystal and Molecular Structure
The work which is described in this thesis is principally concerned with X-ray crystallography. Some other work, which Involved molecular orbital calculations, was also carried out and is described in Appendix I. Three compounds in all were studied by X-ray diffraction techniques, and the results of these investigations are summarised below. (1) Dimethylcertierocin: This compound, which has the formula CH3O.CO.(CH.CH)6.COOCH3, and which is the dimethyl ester of an acid isolated from a fungus, crystallises as yellow needles from chloroform. The crystals are triclinic, space goup C1 1 P 1 or C1 1 - P 1, and the unit cell dimensions are a = 9.06, b = 7.52, c = 6.07 A; alpha= 104.8, beta= 104.
Monitoring Frog Communities: An Application of Machine Learning
Automatic recognition of animal vocalisations would be a valuable tool for a variety of biological research and environmental monitoring applications . We report the development of a software system which can recognise the vocalisations of 22 species of frogs which occur in an area of Northern Australia. This software system will be used in unattended operation to monitor the effect on frog populations of the introduced Cane Toad. The system is based around classification of local peaks in the spectrogram of the audio signal using Quinlan's machine learning system, C4.5 (Quinlan 1993). Unreliable identifications of peaks are aggregated together using a hierarchical structure of segments based on the typical temporal vocalisation species' patterns. This produces robust system performance
Generalisations of the fundamental theorem of projective geometry
The fundamental theorem of projective geometry states that a mapping from a projective space to itself whose range has a sufficient number of points in general position is a projective transformation possibly combined with a self-homomorphism of the underlying field. We obtain generalisations of this in many directions, dealing with the case where the mapping is only defined on an open subset of the underlying space, or a subset of positive measure, and dealing with many different spaces over many different rings
Invited Address - The Role of Water Quality
It is a real pleasure to be back on this campus and particularly at this time of year. It is certainly an honor and a privilege to speak before this distinguished gathering. A portion of your program has dealt with the staggering complexities which scientists face in getting man safely into outer space and back to earth. My discussion will point up another complex challenge in maintaining an earthly resource affecting the health and well-being of all mankind. Only this week a spokesman at the National Watershed Congress in Washington stated that wise use of our water resource can mean the difference between success and failure of such new ventures as the probing of outer space
Preparation, crystal structure, heat capacity, magnetism, and the magnetocaloric effect of Pr5Ni1.9Si3 and PrNi
Single-phase Pr5Ni1.9Si3 and PrNi were prepared and characterized by using differential thermal analysis, single crystal, and powder x-ray diffraction. Their thermal and magnetic properties were studied by measuring heat capacity as a function of temperature in magnetic fields up to 100 kOe and magnetization as a function of magnetic field up to 50 kOe over the temperature range from 5 to 400 K. Pr5Ni1.9Si3 orders magnetically at 50 K, and it undergoes a second transition at 25 K. As inferred from the behavior of the magnetization and magnetocaloric effect (MCE), both ferromagnetic and antiferromagnetic components are present in the magnetic ground state of the material. The heat capacity and magnetocaloric effect of PrNi confirm that it orders ferromagnetically at 19 K. Both Pr5Ni1.9Si3 and PrNi exhibit moderate magnetocaloric effects. The maximum MCE for Pr5Ni1.9Si3 is 3.4 K and it is observed at 50 K for a magnetic field change from 0 to 75 kOe. The maximum MCE for PrNi is 4.2 K, which occurs at 19 K for a magnetic field change from 0 to 100 kOe
The arithmetic of hyperelliptic curves
We summarise recent advances in techniques for solving Diophantine problems on hyperelliptic curves; in particular, those for finding the rank of the Jacobian, and the set of rational points on the curve
LPMLE3 : a novel 1-D approach to study water flow in streambeds using heat as a tracer
We introduce LPMLE3, a new 1-D approach to quantify vertical water flow components at streambeds using temperature data collected in different depths. LPMLE3 solves the partial differential equation for coupled water flow and heat transport in the frequency domain. Unlike other 1-D approaches it does not assume a semi-infinite halfspace with the location of the lower boundary condition approaching infinity. Instead, it uses local upper and lower boundary conditions. As such, the streambed can be divided into finite subdomains bound at the top and bottom by a temperature-time series. Information from a third temperature sensor within each subdomain is then used for parameter estimation. LPMLE3 applies a low order local polynomial to separate periodic and transient parts (including the noise contributions) of a temperature-time series and calculates the frequency response of each subdomain to a known temperature input at the streambed top. A maximum-likelihood estimator is used to estimate the vertical component of water flow, thermal diffusivity, and their uncertainties for each streambed subdomain and provides information regarding model quality. We tested the method on synthetic temperature data generated with the numerical model STRIVE and demonstrate how the vertical flow component can be quantified for field data collected in a Belgian stream. We show that by using the results in additional analyses, nonvertical flow components could be identified and by making certain assumptions they could be quantified for each subdomain. LPMLE3 performed well on both simulated and field data and can be considered a valuable addition to the existing 1-D methods
Induced Mutagenesis in UGT74S1 Gene Leads to Stable New Flax Lines with Altered Secoisolariciresinol Diglucoside (SDG) Profiles
Flax secoisolariciresinol (SECO) diglucoside (SDG) lignan is an emerging natural product purported to prevent chronic diseases in humans. SECO, the aglycone form of SDG, has shown higher intestinal cell absorption but it is not accumulated naturally in planta. Recently, we have identified and characterized a UDP-glucosyltransferase gene, UGT74S1, that glucosylates SECO into its monoglucoside (SMG) and SDG forms when expressed in yeast. However, whether this gene is unique in controlling SECO glucosylation into SDG in planta is unclear. Here, we report on the use of UGT74S1 in reverse and forward genetics to characterize an ethyl methane sulfonate (EMS) mutagenized flax population from cultivar CDC Bethune and consisting of 1996 M2 families. EMS mutagenesis generated 73 SNP variants causing 79 mutational events in the UGT74S1 exonic regions of 93 M2 families. The mutation frequency in the exonic regions was determined to be one per 28 Kb. Of these mutations, 13 homozygous missense mutations and two homozygous nonsense mutations were observed and all were transmitted into the M3 and M4 generations. Forward genetics screening of the population showed homozygous nonsense mutants completely lacking SDG biosynthesis while the production of SMG was observed only in a subset of the M4 lines. Heterozygous or homozygous M4 missense mutants displayed a wide range of SDG levels, some being greater than those of CDC Bethune. No additional deleterious mutations were detected in these mutant lines using a panel of 10 other genes potentially involved in the lignan biosynthesis. This study provides further evidence that UGT74S1 is unique in controlling SDG formation from SECO and this is the first report of non-transgenic flax germplasm with simultaneous knockout of SDG and presence of SMG in planta
Models of everywhere revisited: a technological perspective
The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the
environmental science of a place, changing the nature of the underlying modelling process, from one in which
general model structures are used to one in which modelling becomes a learning process about specific places, in
particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another
it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of everywhere,
models of everything and models at all times, being constantly re-evaluated against the most current
evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and nonlinearities.
However, the approach has, as yet, not been fully utilised or explored. This paper examines the
concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first
proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud
computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again
at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the
remaining research questions. The paper concludes by identifying the key elements of a research agenda that
should underpin such experimentation and deployment
- …