43 research outputs found

    Influence of Intrapredatory Interferences on Impulsive Biological Control Efficiency

    Get PDF
    International audienceIn this paper, a model is proposed for the biological control of a pest by its natural predator. The model incorporates a qualitative description of intrapredatory interference whereby predator density decreases the per capita predation efficiency and generalises the classical Beddington-DeAngelis formulation. A pair of coupled ordinary differential equations are used, augmented by a discrete component to depict the periodic release of a fixed number of predators into the system. This number is defined in terms of the rate of predator release and the frequency at which the releases are to be carried out. This formulation allows us to compare different biological control strategies in terms of release size and frequency that involve the same overall number of predators. The stability properties of the zero-pest solution are analysed. We obtain an upper bound on the interference strength (the biological condition) and a minimal bound on the predator release rate (the managerial condition) required to eradicate a pest population. We demonstrate that increasing the frequency of releases reduces this minimal rate and also increases the rate of convergence of the system to the zero-pest solution for a given release rate. Additionally, we show that other conclusions are to be expected if the interferences between predators have weaker or stronger effects than the generalised Beddington-DeAngelis formulation proposed in this paper

    Two models of interfering predators in impulsive biological control

    Get PDF
    International audienceIn this paper, we study the effects of Beddington-DeAngelis interference and squabbling, respectively, on the minimal rate of predator release required to drive a pest population to zero. A two-dimensional system of coupled ordinary differential equations is considered, augmented by an impulsive component depicting the periodic release of predators into the system. This periodic release takes place independently of the detection of the pests in the field. We establish the existence of a pest-free solution driven by the periodic releases, and express the global stability conditions for this solution in terms of the minimal predator rate required to bring an outbreak of pests to nil. In particular, we show that with the interference effects, the minimal rate will only guarantee eradication if the releases are carried out frequently enough. When Beddington-DeAngelis behaviour is considered, an additional constraint for the existence itself of a successful release rate is that the pest growth rate should be less than the predation pressure, the latter explicitly formulated in terms of the predation function and the interference parameters

    The Effects of Partial Crop Harvest on Biological Pest Control

    Get PDF
    In this paper, the effects of periodic partial harvesting of a continuously grown crop on augmentative biological control are analyzed. Partial harvesting can remove a proportion of both pests and biological control agents, so its influence on the control efficiency cannot be a priori neglected. An impulsive model consisting of a general predator-prey model in ODE, augmented by a discrete component to depict releases of biological control agents and the periodic partial harvesting is used. The periods are taken as integer multiples of each other. A stability condition for pest eradication is expressed as the minimal value of the budget per unit time to spend on predators. We consider the partial harvesting period to be fixed by both the plant's physiology and market forces so that the only manipulated variable is the release period. It is shown that varying the release period with respect to the harvest period influences the minimal budget value when the former is carried out more often than the latter and has no effect when releases take place as often as or less frequently than the partial harvests

    Connecting your Mobile Shopping Cart to the Internet-of-Things

    Get PDF
    International audienceOnline shopping has reached an unforeseen success during the last decade thanks to the explosion of the Internet and the development of dedicated websites. Nonetheless, the wide diversity of e-commerce websites does not really foster the sales, but rather leaves the customer in the middle of dense jungle. In particular, finding the best offer for a specific product might require to spend hours browsing the Internet without being sure of finding the best deal in the end. While some websites are providing comparators to help the customer in finding the best offer meeting her/his requirements, the objectivity of these websites remains questionable, the comparison criteria are statically defined, while the nature of products they support is restricted to specific categories (e.g., electronic devices). In this paper, we introduce MACCHIATO as a user-centered platform leveraging online shopping. MACCHIATO implements the principles of the Internet-of-Things by adopting the REST architectural style and semantic web standards to navigate product databases exposed on the Internet. By doing so, customers keep the control of their shopping process by selecting the stores and comparing the offers according to their own preferences

    An Ontological Framework for Opportunistic Composition of IoT Systems

    Get PDF
    As the number of connected devices rapidly increases, largely thanks to uptake of IoT technologies, there is significant stimulus to enable opportunistic interactions between different systems that encounter each other at run time. However, this is complicated by diversity in IoT technologies and implementation details that are not known in advance. To achieve such unplanned interactions, we use the concept of a holon to represent a system's services and requirements at a high level. A holon is a self-describing system that appears as a whole when viewed from above whilst potentially comprising multiple sub-systems when viewed from below. In order to realise this world view and facilitate opportunistic system interactions, we propose the idea of using ontologies to define and program a holon. Ontologies offer the ability to classify the concepts of a domain, and use this formalised knowledge to infer new knowledge through reasoning. In this paper, we design a holon ontology and associated code generation tools. We also explore a case study of how programming holons using this approach can aid an IoT system to self-describe and reason about other systems it encounters. As such, developers can develop system composition logic at a high-level without any preconceived notions about low-level implementation details. © 2020 IEEE

    A semantic approach to enable data integration for the domain of flood risk management

    Get PDF
    With so many things around us continuously producing and processing data, be it mobile phones, or sensors attached to devices, or satellites sitting thousands of kilometres above our heads, data is becoming increasingly heterogeneous. Scientists are inevitably faced with data challenges, coined as the 4 V’s of data - volume, variety, velocity and veracity. In this paper, we address the issue of data variety. The task of integrating and querying such heterogeneous data is further compounded if the data is in unstructured form. We hence propose an approach using Semantic Web and Natural Language Processing techniques to resolve the heterogeneity arising in data formats, bring together structured and unstructured data and provide a unified data model to query from disparate data sets

    Models of everywhere revisited: a technological perspective

    Get PDF
    The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the environmental science of a place, changing the nature of the underlying modelling process, from one in which general model structures are used to one in which modelling becomes a learning process about specific places, in particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of everywhere, models of everything and models at all times, being constantly re-evaluated against the most current evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and nonlinearities. However, the approach has, as yet, not been fully utilised or explored. This paper examines the concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the remaining research questions. The paper concludes by identifying the key elements of a research agenda that should underpin such experimentation and deployment

    An Ontological Architecture for Principled and Automated System of Systems Composition

    Get PDF
    A distributed system's functionality must continuously evolve, especially when environmental context changes. Such required evolution imposes unbearable complexity on system development. An alternative is to make systems able to self-adapt by opportunistically composing at runtime to generate systems of systems (SoSs) that offer value-added functionality. The success of such an approach calls for abstracting the heterogeneity of systems and enabling the programmatic construction of SoSs with minimal developer intervention. We propose a general ontology-based approach to describe distributed systems, seeking to achieve abstraction and enable runtime reasoning between systems. We also propose an architecture for systems that utilize such ontologies to enable systems to discover and `understand' each other, and potentially compose, all at runtime. We detail features of the ontology and the architecture through two contrasting case studies. We also quantitatively evaluate the scalability and validity of our approach through experiments and simulations. Our approach enables system developers to focus on high-level SoS composition without being tied down with the specific deployment-specific implementation details

    Intermediate CONNECT Architecture

    Get PDF
    Interoperability remains a fundamental challenge when connecting heterogeneous systems which encounter and spontaneously communicate with one another in pervasive computing environments. This challenge is exasperated by the highly heterogeneous technologies employed by each of the interacting parties, i.e., in terms of hardware, operating system, middleware protocols, and application protocols. The key aim of the CONNECT project is to drop this heterogeneity barrier and achieve universal interoperability. Here we report on the activities of WP1 into developing the CONNECT architecture that will underpin this solution. In this respect, we present the following key contributions from the second year. Firstly, the intermediary CONNECT architecture that presents a more concrete view of the technologies and principles employed to enable interoperability between heterogeneous networked systems. Secondly, the design and implementation of the discovery enabler with emphasis on the approaches taken to match compatible networked systems. Thirdly, the realisation of CONNECTors that can be deployed in the environment; we provide domain specific language solutions to generate and translate between middleware protocols. Fourthly, we highlight the role of ontologies within CONNECT and demonstrate how ontologies crosscut all functionality within the CONNECT architecture

    The design and deployment of an end-to-end IoT infrastructure for the natural environment

    Get PDF
    Internet of Things (IoT) systems have seen recent growth in popularity for city and home environments. We report on the design, deployment, and use of the IoT infrastructure for environmental monitoring and management. Working closely with hydrologists, soil scientists, and animal behaviour scientists, we successfully deployed and utilised a system to deliver integrated information across these two fields in the first such example of real-time multidimensional environmental science. We describe the design of this system; its requirements and operational effectiveness for hydrological, soil, and ethological scientists; and our experiences from building, maintaining, and using the deployment at a remote site in difficult conditions. Based on this experience, we discuss key future work for the IoT community when working in these kinds of environmental deployments
    corecore