40 research outputs found

    Transgene Excision Has No Impact on In Vivo Integration of Human iPS Derived Neural Precursors

    Get PDF
    The derivation of induced human pluripotent stem cells (hiPS) has generated significant enthusiasm particularly for the prospects of cell-based therapy. But there are concerns about the suitability of iPS cells for in vivo applications due in part to the introduction of potentially oncogenic transcription factors via viral vectors. Recently developed lentiviral vectors allow the excision of viral reprogramming factors and the development of transgene-free iPS lines. However it is unclear if reprogramming strategy has an impact on the differentiation potential and the in vivo behavior of hiPS progeny. Here we subject viral factor-free, c-myc-free and conventionally reprogrammed four-factor human iPS lines to a further challenge, by analyzing their differentiation potential along the 3 neural lineages and over extended periods of time in vitro, as well as by interrogating their ability to respond to local environmental cues by grafting into the striatum. We demonstrate similar and efficient differentiation into neurons, astrocytes and oligodendrocytes among all hiPS and human ES line controls. Upon intracranial grafting in the normal rat (Sprague Dawley), precursors derived from all hiPS lines exhibited good survival and response to environmental cues by integrating into the subventricular zone, acquiring phenotypes typical of type A, B or C cells and migrating along the rostral migratory stream into the olfactory bulb. There was no teratoma or other tumor formation 12 weeks after grafting in any of the 26 animals used in the study. Thus neither factor excision nor persistence of c-myc impact the behavior of hiPS lines in vivo.United States. National Institutes of HealthNew York State Stem Cell ScienceNational Institute of Neurological Disorders and Stroke (U.S.)Starr Foundation (Tri-Institutional Starr Stem Cell Scholars Fellowship

    Physical activity and exercise: Strategies to manage frailty

    Get PDF
    Frailty, a consequence of the interaction of the aging process and certain chronic diseases, compromises functional outcomes in the elderly and substantially increases their risk for developing disabilities and other adverse outcomes. Frailty follows from the combination of several impaired physiological mechanisms affecting multiple organs and systems. And, though frailty and sarcopenia are related, they are two different conditions. Thus, strategies to preserve or improve functional status should consider systemic function in addition to muscle conditioning. Physical activity/exercise is considered one of the main strategies to counteract frailty-related physical impairment in the elderly. Exercise reduces age-related oxidative damage and chronic inflammation, increases autophagy, and improves mitochondrial function, myokine profile, insulin-like growth factor-1 (IGF-1) signaling pathway, and insulin sensitivity. Exercise interventions target resistance (strength and power), aerobic, balance, and flexibility work. Each type improves different aspects of physical functioning, though they could be combined according to need and prescribed as a multicomponent intervention. Therefore, exercise intervention programs should be prescribed based on an individual's physical functioning and adapted to the ensuing response.pre-print2.493 K
    corecore