347 research outputs found

    SrMnO3 thermochromic behavior governed by size-dependent structural distortions

    Get PDF
    The influence of particle size in both the structure and thermochromic behavior of 4H-SrMnO related perovskite is described. Microsized SrMnO suffers a structural transition from hexagonal (P6/mmc) to orthorhombic (C222) symmetry at temperature close to 340 K. The orthorhombic distortion is due to the tilting of the corner-sharing MnO units building the 4H structural type. When temperature decreases, the distortion becomes sharper reaching its maximal degree at ∼125 K. These structural changes promote the modification of the electronic structure of orthorhombic SrMnO phase originating the observed color change. nano-SrMnO adopts the ideal 4H hexagonal structure at room temperature, the orthorhombic distortion being only detected at temperature below 170 K. A decrease in the orthorhombic distortion degree, compared to that observed in the microsample, may be the reason why a color change is not observed at low temperature (77 K)

    LDL particle size and composition and incident cardiovascular disease in a South-European population: The Hortega-Liposcale Follow-up Study.

    Get PDF
    The association of low-density lipoprotein (LDL) particle composition with cardiovascular risk has not been explored before. The aim was to evaluate the relationship between baseline LDL particle size and composition (proportions of large, medium and small LDL particles over their sum expressed as small-LDL %, medium-LDL % and large-LDL %) and incident cardiovascular disease in a population-based study. Methods: Direct measurement of LDL particles was performed using a two-dimensional NMR-technique (Liposcale®). LDL cholesterol was assessed using both standard photometrical methods and the Liposcale® technique in a representative sample of 1162 adult men and women from Spain. Results: The geometric mean of total LDL particle concentration in the study sample was 827.2 mg/dL (95% CI 814.7, 839.8). During a mean follow-up of 12.4 ± 3.3 years, a total of 159 events occurred. Medium LDL particles were positively associated with all cardiovascular disease, coronary heart disease (CHD) and stroke after adjustment for traditional risk factors and treatment. Regarding LDL particle composition, the multivariable adjusted hazard ratios for CHD for a 5% increase in medium and small LDL % by a corresponding decrease of large LDL % were 1.93 (1.55, 2.39) and 1.41 (1.14, 1.74), respectively. Conclusions: Medium LDL particles were associated with incident cardiovascular disease. LDL particles showed the strongest association with cardiovascular events when the particle composition, rather than the total concentration, was investigated. A change in baseline composition of LDL particles from large to medium and small LDL particles was associated with an increased cardiovascular risk, especially for CHD

    Neutron cross-sections for advanced nuclear systems : The n-TOF project at CERN

    Get PDF
    © Owned by the authors, published by EDP Sciences, 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n-TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.Peer reviewedFinal Published versio

    Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics

    Get PDF
    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well

    238U(n, γ) reaction cross section measurement with C 6D6 detectors at the n-TOF CERN facility

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,γ) cross section measurement performed at n-TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction.Peer reviewe

    A longitudinal study of gene expression in first-episode schizophrenia; exploring relapse mechanisms by co-expression analysis in peripheral blood

    Get PDF
    Little is known about the pathophysiological mechanisms of relapse in first-episode schizophrenia, which limits the study of potential biomarkers. To explore relapse mechanisms and identify potential biomarkers for relapse prediction, we analyzed gene expression in peripheral blood in a cohort of first-episode schizophrenia patients with less than 5 years of evolution who had been evaluated over a 3-year follow-up period. A total of 91 participants of the 2EPs project formed the sample for baseline gene expression analysis. Of these, 67 provided biological samples at follow-up (36 after 3 years and 31 at relapse). Gene expression was assessed using the Clariom S Human Array. Weighted gene co-expression network analysis was applied to identify modules of co-expressed genes and to analyze their preservation after 3 years of follow-up or at relapse. Among the 25 modules identified, one module was semi-conserved at relapse (DarkTurquoise) and was enriched with risk genes for schizophrenia, showing a dysregulation of the TCF4 gene network in the module. Two modules were semi-conserved both at relapse and after 3 years of follow-up (DarkRed and DarkGrey) and were found to be biologically associated with protein modification and protein location processes. Higher expression of DarkRed genes was associated with higher risk of suffering a relapse and early appearance of relapse (p = 0.045). Our findings suggest that a dysregulation of the TCF4 network could be an important step in the biological process that leads to relapse and suggest that genes related to the ubiquitin proteosome system could be potential biomarkers of relapse. © 2021, The Author(s)

    Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV

    Measurement of the 12C(n,p)12B cross section at n-TOF at CERN by in-beam activation analysis

    Get PDF
    The integral cross section of the 12C(n,p)12B reaction has been determined for the first time in the neutron energy range from threshold to several GeV at the n-TOF facility at CERN. The measurement relies on the activation technique with the β decay of 12B measured over a period of four half-lives within the same neutron bunch in which the reaction occurs. The results indicate that model predictions, used in a variety of applications, are mostly inadequate. The value of the integral cross section reported here can be used as a benchmark for verifying or tuning model calculations.Peer reviewedFinal Accepted Versio

    The 33S(n,α)30Si cross section measurement at n-TOF-EAR2 (CERN) : From 0.01 eV to the resonance region

    Get PDF
    The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n-TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT)
    corecore