137 research outputs found
Blocking pathogen transmission at the source: reservoir targeted OspA-based vaccines against Borrelia burgdorferi
Control strategies are especially challenging for microbial diseases caused by pathogens that persist in wildlife reservoirs and use arthropod vectors to cycle amongst those species. One of the most relevant illnesses that pose a direct human health risk is Lyme disease; in the US, the Centers for Disease Control and Prevention (CDC) recently revised the probable number of cases by 10 fold, to 300,000 cases per year. Caused by Borrelia burgdorferi, Lyme disease can affect the nervous system, joints and heart. No human vaccine is approved by the Food and Drug Administration. In addition to novel human vaccines, new strategies for prevention of Lyme disease consist of pest management interventions, vector-targeted vaccines and reservoir-targeted vaccines. However, even the most efficacious human vaccines can not prevent Lyme disease expansion into other geographical areas. The other strategies aim indirectly at reducing tick density and at disrupting the transmission of B. burgdorferi by targeting one or more key elements that maintain the enzootic cycle: the reservoir host and/or the tick vector. Here, I provide a brief overview of the application of an OspA-based wildlife reservoir targeted vaccine aimed at reducing transmission of B. burgdorferi and present it as a strategy for reducing Lyme disease risk to humans
Specific IgG3/IgG1 isotyping may further inform diagnosis of acute disease
The laborious microscopic agglutination test (MAT) is the gold standard serologic test for laboratory diagnosis of leptospirosis. We developed EIA based serologic assays using recombinant proteins (rLigA, rLigB, rLipL32) and whole-cell extracts from eight Leptospira serovars as antigen and assessed the diagnostic performance of the new assay within each class, against MAT positive (MAT+) human sera panels from Portugal/PT (n = 143) and Angola/AO (n = 100). We found that a combination of recombinant proteins rLigA, rLigB and rLipL32 correctly identified antigen-specific IgG from patients with clinical and laboratory confirmed leptospirosis (MAT+) with 92% sensitivity and ~ 97% specificity (AUC 0.974) in serum from the provinces of Luanda (LDA) and Huambo (HBO) in Angola. A combination of whole cell extracts of L. interrogans sv Copenhageni (LiC), L. kirschneri Mozdok (LkM), L. borgpetersenii Arborea (LbA) and L. biflexa Patoc (LbP) accurately identified patients with clinical and laboratory confirmed leptospirosis (MAT+) with 100% sensitivity and ~ 98% specificity for all provinces of Angola and Portugal (AUC: 0.997 for AO/LDA/HBO, 1.000 for AO/HLA, 0.999 for PT/AZ and 1.000 for PT/LIS). Interestingly, we found that MAT+ IgG+ serum from Angola had a significantly higher presence of IgD and that IgG3/IgG1 isotypes were significantly increased in the MAT+ IgG+ serum from Portugal. Given that IgM/IgD class and IgG3/IgG1 specific isotypes are produced in the earliest course of infection, immunoglobulin G isotyping may be used to inform diagnosis of acute leptospirosis. The speed, ease of use and accuracy of EIA tests make them excellent alternatives to the laborious and expensive MAT for screening acute infection in areas where circulating serovars of pathogenic Leptospira are well defined.publishersversionepub_ahead_of_prin
Diagnosis of Human Leptospirosis in a Clinical Setting: Real-Time PCR High Resolution Melting Analysis for Detection of Leptospira at the Onset of Disease:
Currently, direct detection of Leptospira can be done in clinical laboratories by conventional and by real-time PCR (qRT-PCR). We tested a biobank of paired samples of serum and urine from the same patient (202 patients) presenting at the hospital in an area endemic for leptospirosis using qRT-PCR followed by high resolution melting (HRM) analysis. The results were compared with those obtained by conventional nested PCR and with the serologic gold standard microscopic agglutination test (MAT). Differences were resolved by sequencing. qRT-PCR-HRM was positive for 46 of the 202 patients (22.7%, accuracy 100%) which is consistent with known prevalence of leptospirosis in the Azores. MAT results were positive for 3 of the 46 patients (6.5%). Analysis of paired samples allowed us to identify the illness point at which patients presented at the hospital: onset, dissemination or excretion. The melting curve analysis of Leptospira species revealed that 60.9% (28/46) of patients were infected with L. interrogans and 39.1% (18/46) were infected with L. borgpetersenii, both endemic to the Azores. We validated the use of qRT-PCR-HRM for diagnosis of leptospirosis and for identification of the Leptospira species at the earliest onset of infection in a clinical setting, in less than 2 hours.publishersversionpublishe
Simple Objective Detection of Human Lyme Disease Infection Using Immuno-PCR and a Single Recombinant Hybrid Antigen
A serology-based tiered approach has, to date, provided the most effective means of laboratory confirmation of clinically suspected cases of Lyme disease, but it lacks sensitivity in the early stages of disease and is often dependent on subjectively scored immunoblots. We recently demonstrated the use of immuno-PCR (iPCR) for detecting Borrelia burgdorferi antibodies in patient serum samples that were positive for Lyme disease. To better understand the performance of the Lyme disease iPCR assay, the repeatability and variability of the background of the assay across samples from a healthy population (n = 36) were analyzed. Both of these parameters were found to have coefficients of variation of \u3c 3%. Using eight antigen-specific iPCR assays and positive call thresholds established for each assay, iPCR IgM and/or IgG diagnosis from Lyme disease patient serum samples (n = 12) demonstrated a strong correlation with that of 2-tier testing. Furthermore, a simplified iPCR approach using a single hybrid antigen and detecting only IgG antibodies confirmed the 2-tier diagnosis in the Lyme disease patient serum samples (n = 12). Validation of the hybrid antigen IgG iPCR assay using a blinded panel of Lyme disease and non-Lyme disease patient serum samples (n = 92) resulted in a sensitivity of 69% (95% confidence interval [CI], 50% to 84%), compared to that of the 2-tier analysis at 59% (95% CI, 41% to 76%), and a specificity of 98% (95% CI, 91% to 100%) compared to that of the 2-tier analysis at 97% (95% CI, 88% to 100%). A single-tier hybrid antigen iPCR assay has the potential to be an improved method for detecting host-generated antibodies against B. burgdorferi
IFNγ production in peripheral blood of early Lyme disease patients to hLFAα(L) (aa326-345)
BACKGROUND: It has been proposed that outer surface protein A (OspA) of Borrelia burgdorferi sensu stricto contains a T helper 1 (Th1) cell epitope that could play a role in an autoimmune response to hLFA1. METHODS: We used two peptides, hLFAα(L) (aa326-345) and Borrelia burgdorferi OspAB31 (aa164-183), as stimulating antigens to measure Th1 proinflammatory IFNγ cytokine production in peripheral blood of Lyme disease patients presenting with EM without history of arthritis, as well as in peripheral blood of healthy individuals. RESULTS: IFNγ responses to hLFA1 peptide were observed in 11 of 19 Lyme disease patients and in 3 of 15 healthy controls. In contrast, only 2 of 19 of the Lyme disease patients and none of the controls responded to the homologous OspAB31 peptide. CONCLUSIONS: IFNγ was produced in response to stimulation with peptide hLFAα(L) (aa326-345) in peripheral blood of 58% of patients with early Lyme disease without signs of arthritis, as well as in peripheral blood of 20% of healthy individuals, but not in response to stimulation with the homologous OspAB31 (aa164-183) peptide (p < 0.05). Our results suggest that reactivity to the hLFA1 peptide in peripheral blood may be the result of T cell degeneracy
Immune Response to Lactobacillus plantarum Expressing Borrelia burgdorferi OspA Is Modulated by the Lipid Modification of the Antigen
Over the past decade there has been increasing interest in the use of lactic acid bacteria as mucosal delivery vehicles for vaccine antigens, microbicides and therapeutics. We investigated the mechanism by which a mucosal vaccine based in recombinant lactic acid bacteria breaks the immunological tolerance of the gut in order to elicit a protective immune response.We analyzed how the lipid modification of OspA affects the localization of the antigen in our delivery vehicle using a number of biochemistry techniques. Furthermore, we examined how OspA-expressing L. plantarum breaks the oral tolerance of the gut by stimulating human intestinal epithelial cells, peripheral blood mononuclear cells and monocyte derived dendritic cells and measuring cytokine production. We show that the leader peptide of OspA targets the protein to the cell envelope of L. plantarum, and it is responsible for protein export across the membrane. Mutation of the lipidation site in OspA redirects protein localization within the cell envelope. Further, we show that lipidated-OspA-expressing L. plantarum does not induce secretion of the pro-inflammatory cytokine IL-8 by intestinal epithelial cells. In addition, it breaks oral tolerance of the gut via Th1/Th2 cell mediated immunity, as shown by the production of pro- and anti-inflammatory cytokines by human dendritic cells, and by the production of IgG2a and IgG1 antibodies, respectively.Lipid modification of OspA expressed in L. plantarum modulates the immune response to this antigen through a Th1/Th2 immune response
Escape of TLR5 Recognition by Leptospira spp.: A Rationale for Atypical Endoflagella
Leptospira (L.) interrogans are invasive bacteria responsible for leptospirosis, a worldwide zoonosis. They possess two periplasmic endoflagellae that allow their motility. L. interrogans are stealth pathogens that escape the innate immune recognition of the NOD-like receptors NOD1/2, and the human Toll-like receptor (TLR)4, which senses peptidoglycan and lipopolysaccharide (LPS), respectively. TLR5 is another receptor of bacterial cell wall components, recognizing flagellin subunits. To study the contribution of TLR5 in the host defense against leptospires, we infected WT and TLR5 deficient mice with pathogenic L. interrogans and tracked the infection by in vivo live imaging of bioluminescent bacteria or by qPCR. We did not identify any protective or inflammatory role of murine TLR5 for controlling pathogenic Leptospira. Likewise, subsequent in vitro experiments showed that infections with different live strains of L. interrogans and L. biflexa did not trigger TLR5 signaling. However, unexpectedly, heat-killed bacteria stimulated human and bovine TLR5, but did not, or barely induced stimulation via murine TLR5. Abolition of TLR5 recognition required extensive boiling time of the bacteria or proteinase K treatment, showing an unusual high stability of the leptospiral flagellins. Interestingly, after using antimicrobial peptides to destabilize live leptospires, we detected TLR5 activity, suggesting that TLR5 could participate in the fight against leptospires in humans or cattle. Using different Leptospira strains with mutations in the flagellin proteins, we further showed that neither FlaA nor Fcp participated in the recognition by TLR5, suggesting a role for the FlaB. FlaB have structural homology to Salmonella FliC, and possess conserved residues important for TLR5 activation, as shown by in silico analyses. Accordingly, we found that leptospires regulate the expression of FlaB mRNA according to the growth phase in vitro, and that infection with L. interrogans in hamsters and in mice downregulated the expression of the FlaB, but not the FlaA subunits. Altogether, in contrast to different bacteria that modify their flagellin sequences to escape TLR5 recognition, our study suggests that the peculiar central localization and stability of the FlaB monomers in the periplasmic endoflagellae, associated with the downregulation of FlaB subunits in hosts, constitute an efficient strategy of leptospires to escape the TLR5 recognition and the induced immune response
Dlg1 binds GKAP to control dynein association with microtubules, centrosome positioning, and cell polarity
The small GTPase Cdc42 regulates interactions of dynein with microtubules through the polarity protein Dlg1 and the scaffolding protein GKAP
Syrian Hamster as an Animal Model for the Study on Infectious Diseases
Infectious diseases still remain one of the biggest challenges for human health. In
order to gain a better understanding of the pathogenesis of infectious diseases and
develop effective diagnostic tools, therapeutic agents, and preventive vaccines, a suitable
animal model which can represent the characteristics of infectious is required. The
Syrian hamster immune responses to infectious pathogens are similar to humans and
as such, this model is advantageous for studying pathogenesis of infection including
post-bacterial, viral and parasitic pathogens, along with assessing the efficacy and
interactions of medications and vaccines for those pathogens. This review summarizes
the current status of Syrian hamster models and their use for understanding the
underlying mechanisms of pathogen infection, in addition to their use as a drug discovery
platform and provides a strong rationale for the selection of Syrian hamster as animal
models in biomedical research. The challenges of using Syrian hamster as an alternative
animal model for the research of infectious diseases are also addressed.
Keywords: infectious diseases, Syrian hamster, drug discovery, infection mechanism, biomedical researc
- …