75 research outputs found
Identifying genomic regions for fine-mapping using genome scan meta-analysis (GSMA) to identify the minimum regions of maximum significance (MRMS) across populations
In order to detect linkage of the simulated complex disease Kofendrerd Personality Disorder across studies from multiple populations, we performed a genome scan meta-analysis (GSMA). Using the 7-cM microsatellite map, nonparametric multipoint linkage analyses were performed separately on each of the four simulated populations independently to determine p-values. The genome of each population was divided into 20-cM bin regions, and each bin was rank-ordered based on the most significant linkage p-value for that population in that region. The bin ranks were then averaged across all four studies to determine the most significant 20-cM regions over all studies. Statistical significance of the averaged bin ranks was determined from a normal distribution of randomly assigned rank averages. To narrow the region of interest for fine-mapping, the meta-analysis was repeated two additional times, with each of the 20-cM bins offset by 7 cM and 13 cM, respectively, creating regions of overlap with the original method. The 6–7 cM shared regions, where the highest averaged 20-cM bins from each of the three offsets overlap, designated the minimum region of maximum significance (MRMS). Application of the GSMA-MRMS method revealed genome wide significance (p-values refer to the average rank assigned to the bin) at regions including or adjacent to all of the simulated disease loci: chromosome 1 (p < 0.0001 for 160–167 cM, including D1), chromosome 3 (p-value < 0.0000001 for 287–294 cM, including D2), chromosome 5 (p-value < 0.001 for 0–7 cM, including D3), and chromosome 9 (p-value < 0.05 for 7–14 cM, the region adjacent to D4). This GSMA analysis approach demonstrates the power of linkage meta-analysis to detect multiple genes simultaneously for a complex disorder. The MRMS method enhances this powerful tool to focus on more localized regions of linkage
Methods for detecting gene × gene interaction in multiplex extended pedigrees
Complex diseases are multifactorial in nature and can involve multiple loci with gene × gene and gene × environment interactions. Research on methods to uncover the interactions between those genes that confer susceptibility to disease has been extensive, but many of these methods have only been developed for sibling pairs or sibships. In this report, we assess the performance of two methods for finding gene × gene interactions that are applicable to arbitrarily sized pedigrees, one based on correlation in per-family nonparametric linkage scores and another that incorporates candidate loci genotypes as covariates into an affected relative pair linkage analysis. The power and type I error rate of both of these methods was addressed using the simulated Genetic Analysis Workshop 14 data. In general, we found detection of the interacting loci to be a difficult problem, and though we experienced some modest success there is a clear need to continue developing new methods and approaches to the problem
Methods for detecting gene × gene interaction in multiplex extended pedigrees
Complex diseases are multifactorial in nature and can involve multiple loci with gene × gene and gene × environment interactions. Research on methods to uncover the interactions between those genes that confer susceptibility to disease has been extensive, but many of these methods have only been developed for sibling pairs or sibships. In this report, we assess the performance of two methods for finding gene × gene interactions that are applicable to arbitrarily sized pedigrees, one based on correlation in per-family nonparametric linkage scores and another that incorporates candidate loci genotypes as covariates into an affected relative pair linkage analysis. The power and type I error rate of both of these methods was addressed using the simulated Genetic Analysis Workshop 14 data. In general, we found detection of the interacting loci to be a difficult problem, and though we experienced some modest success there is a clear need to continue developing new methods and approaches to the problem
A biophysical model of cell adhesion mediated by immunoadhesin drugs and antibodies
A promising direction in drug development is to exploit the ability of
natural killer cells to kill antibody-labeled target cells. Monoclonal
antibodies and drugs designed to elicit this effect typically bind cell-surface
epitopes that are overexpressed on target cells but also present on other
cells. Thus it is important to understand adhesion of cells by antibodies and
similar molecules. We present an equilibrium model of such adhesion,
incorporating heterogeneity in target cell epitope density and epitope
immobility. We compare with experiments on the adhesion of Jurkat T cells to
bilayers containing the relevant natural killer cell receptor, with adhesion
mediated by the drug alefacept. We show that a model in which all target cell
epitopes are mobile and available is inconsistent with the data, suggesting
that more complex mechanisms are at work. We hypothesize that the immobile
epitope fraction may change with cell adhesion, and we find that such a model
is more consistent with the data. We also quantitatively describe the parameter
space in which binding occurs. Our results point toward mechanisms relating
epitope immobility to cell adhesion and offer insight into the activity of an
important class of drugs.Comment: 13 pages, 5 figure
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
Why do banks promise to pay par on demand?
We survey the theories of why banks promise to pay par on demand and examine evidence about
the conditions under which banks have promised to pay the par value of deposits and banknotes on
demand when holding only fractional reserves. The theoretical literature can be broadly divided into four
strands: liquidity provision, asymmetric information, legal restrictions, and a medium of exchange. We
assume that it is not zero cost to make a promise to redeem a liability at par value on demand. If so, then
the conditions in the theories that result in par redemption are possible explanations of why banks
promise to pay par on demand. If the explanation based on customers’ demand for liquidity is correct,
payment of deposits at par will be promised when banks hold assets that are illiquid in the short run. If
the asymmetric-information explanation based on the difficulty of valuing assets is correct, the
marketability of banks’ assets determines whether banks promise to pay par. If the legal restrictions
explanation of par redemption is correct, banks will not promise to pay par if they are not required to do
so. If the transaction explanation is correct, banks will promise to pay par value only if the deposits are
used in transactions. After the survey of the theoretical literature, we examine the history of banking in
several countries in different eras: fourth-century Athens, medieval Italy, Japan, and free banking and
money market mutual funds in the United States. We find that all of the theories can explain some of the
observed banking arrangements, and none explain all of them
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
Stable nuclear transformation of Eudorina elegans
Lerche K, Hallmann A. Stable nuclear transformation of Eudorina elegans. BMC Biotechnology. 2013;13(1): 11.UNLABELLED: ABSTRACT: BACKGROUND: A fundamental step in evolution was the transition from unicellular to differentiated, multicellular organisms. Volvocine algae have been used for several decades as a model lineage to investigate the evolutionary aspects of multicellularity and cellular differentiation. There are two well-studied volvocine species, a unicellular alga (Chlamydomonas reinhardtii) and a multicellular alga with differentiated cell types (Volvox carteri). Species with intermediate characteristics also exist, which blur the boundaries between unicellularity and differentiated multicellularity. These species include the globular alga Eudorina elegans, which is composed of 16-32 cells. However, detailed molecular analyses of E. elegans require genetic manipulation. Unfortunately, genetic engineering has not yet been established for Eudorina, and only limited DNA and/or protein sequence information is available. RESULTS: Here, we describe the stable nuclear transformation of E. elegans by particle bombardment using both a chimeric selectable marker and reporter genes from different heterologous sources. Transgenic algae resistant to paromomycin were achieved using the aminoglycoside 3'-phosphotransferase VIII (aphVIII) gene of Streptomyces rimosus, an actinobacterium, under the control of an artificial promoter consisting of two V. carteri promoters in tandem. Transformants exhibited an increase in resistance to paromomycin by up to 333-fold. Co-transformation with non-selectable plasmids was achieved with a rate of 50 - 100%. The luciferase (gluc) gene from the marine copepod Gaussia princeps, which previously was engineered to match the codon usage of C. reinhardtii, was used as a reporter gene. The expression of gluc was mediated by promoters from C. reinhardtii and V. carteri. Heterologous heat shock promoters induced an increase in luciferase activity (up to 600-fold) at elevated temperatures. Long-term stability and both constitutive and inducible expression of the co-bombarded gluc gene was demonstrated by transcription analysis and bioluminescence assays. CONCLUSIONS: Heterologous flanking sequences, including promoters, work in E. elegans and permit both constitutive and inducible expression of heterologous genes. Stable nuclear transformation of E. elegans is now routine. Thus, we show that genetic engineering of a species is possible even without the resources of endogenous genes and promoters
- …