116 research outputs found

    The female protective effect in autism spectrum disorder is not mediated by a single genetic locus

    Get PDF
    Background: A 4:1 male to female sex bias has consistently been observed in autism spectrum disorder (ASD). Epidemiological and genetic studies suggest a female protective effect (FPE) may account for part of this bias; however, the mechanism of such protection is unknown. Quantitative assessment of ASD symptoms using the Social Responsiveness Scale (SRS) shows a bimodal distribution unique to females in multiplex families. This leads to the hypothesis that a single, common genetic locus on chromosome X might mediate the FPE and produce the ASD sex bias. Such a locus would represent a major therapeutic target and is likely to have been missed by conventional genome-wide association study (GWAS) analysis. Methods: To explore this possibility, we performed an association study in affected versus unaffected females, considering three tiers of single nucleotide polymorphisms (SNPs) as follows: 1) regions of chromosome X that escape X-inactivation, 2) all of chromosome X, and 3) genome-wide. Results: No evidence of a SNP meeting the criteria for a single FPE locus was observed, despite the analysis being well powered to detect this effect. Conclusions: The results do not support the hypothesis that the FPE is mediated by a single genetic locus; however, this does not exclude the possibility of multiple genetic loci playing a role in the FPE.Intellectual and Developmental Disabilities Research Center at Washington University (NIH/NICHD) [P30 HD062171]; Simons Foundation (SFARI) [307705]; Canadian Institutes of Health Research; [R01 HD042541]SCI(E)[email protected]; [email protected]

    Taxonomy of Trust-Relevant Failures and Mitigation Strategies

    Get PDF
    We develop a taxonomy that categorizes HRI failure types and their impact on trust to structure the broad range of knowledge contributions. We further identify research gaps in order to support fellow researchers in the development of trustworthy robots. Studying trust repair in HRI has only recently been given more interest and we propose a taxonomy of potential trust violations and suitable repair strategies to support researchers during the development of interaction scenarios. The taxonomy distinguishes four failure types: Design, System, Expectation, and User failures and outlines potential mitigation strategies. Based on these failures, strategies for autonomous failure detection and repair are presented, employing explanation, verification and validation techniques. Finally, a research agenda for HRI is outlined, discussing identified gaps related to the relation of failures and HR-trust

    Impact of clinical characteristics on human chorionic gonadotropin regression after molar pregnancy

    Get PDF
    OBJECTIVES: This study aimed to determine the effects of age, race/ethnicity, body mass index, and contraception on human chorionic gonadotropin (hCG) regression following the evacuation of a molar pregnancy. METHODS: This was a retrospective cohort study of 277 patients with molar pregnancies between January 1, 1994 and December 31, 2015. The rate of hCG regression was estimated using mixed-effects linear regression models on daily log-transformed serum hCG levels after evacuation. RESULTS: There were no differences in hCG half-lives among age (p=0.13) or race/ethnicity (p=0.16) groups. Women with obesity and hormonal contraceptive use demonstrated faster hCG regression than their counterparts (3.2 versus. 3.7 days, p=0.02 and 3.4 versus. 4.0 days, p=0.002, respectively). CONCLUSION: Age and race/ethnicity were not associated with hCG regression rates. Hormonal contraceptive use and obesity were associated with shorter hCG half-lives, but with unlikely clinical significance. It is important to understand whether the clinical characteristics of patients may influence the hCG regression curve, as it has been proposed as a way to predict the risk of gestational trophoblastic neoplasia

    Effects of advanced paternal age on trajectories of social behavior in offspring

    Get PDF
    Our study is the first investigation of the effects of advanced paternal age (APA) on the developmental trajectory of social behavior in rodent offspring. Given the strong epidemiological association between APA and sexually dimorphic neurodevelopmental disorders that are characterized by abnormalities in social behavior (autism, schizophrenia), we assessed sociability in male and female inbred mice (C57BL/6J) across postnatal development (N=104) in relation to paternal age. We found differences in early social behavior in both male and female offspring of older breeders, with differences in this social domain persisting into adulthood in males only. We showed that these social deficits were not present in the fathers of these offspring, confirming a de novo origin of an altered social trajectory in the offspring generation. Our results, highly novel in rodent research, support the epidemiological observations in humans and provide evidence for a causal link between APA, age-related changes in the paternal sperm DNA and neurodevelopmental disorders in their offspring

    De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder

    Get PDF
    Whole-exome sequencing (WES) studies have demonstrated the contribution of de novo loss-of-function single-nucleotide variants (SNVs) to autism spectrum disorder (ASD). However, challenges in the reliable detection of de novo insertions and deletions (indels) have limited inclusion of these variants in prior analyses. By applying a robust indel detection method to WES data from 787 ASD families (2,963 individuals), we demonstrate that de novo frameshift indels contribute to ASD risk (OR= 1.6; 95% CI= 1.0-2.7; p= 0.03), are more common in female probands (p= 0.02), are enriched among genes encoding FMRP targets (p= 6× 10-9), and arise predominantly on the paternal chromosome (p< 0.001). On the basis of mutation rates in probands versus unaffected siblings, we conclude that de novo frameshift indels contribute to risk in approximately 3% of individuals with ASD. Finally, by observing clustering of mutations in unrelated probands, we uncover two ASD-associated genes: KMT2E (MLL5), a chromatin regulator, and RIMS1, a regulator of synaptic vesicle release

    Socially assistive robotics for post-stroke rehabilitation

    Get PDF
    BACKGROUND: Although there is a great deal of success in rehabilitative robotics applied to patient recovery post stroke, most of the research to date has dealt with providing physical assistance. However, new rehabilitation studies support the theory that not all therapy need be hands-on. We describe a new area, called socially assistive robotics, that focuses on non-contact patient/user assistance. We demonstrate the approach with an implemented and tested post-stroke recovery robot and discuss its potential for effectiveness. RESULTS: We describe a pilot study involving an autonomous assistive mobile robot that aids stroke patient rehabilitation by providing monitoring, encouragement, and reminders. The robot navigates autonomously, monitors the patient's arm activity, and helps the patient remember to follow a rehabilitation program. We also show preliminary results from a follow-up study that focused on the role of robot physical embodiment in a rehabilitation context. CONCLUSION: We outline and discuss future experimental designs and factors toward the development of effective socially assistive post-stroke rehabilitation robots

    PCT and beyond: toward a computational framework for ‘intelligent’ communicative systems

    No full text
    Recent years have witnessed increasing interest in ‘intelligent’ autonomous machines such as robots. However, there is a long way to go before autonomous systems reach the level of capabilities required for even the simplest of tasks involving human-robot interaction - especially if it involves communicative behavior such as speech and language. The field of Artificial Intelligence (AI) has made great strides in these areas, and has graduated from high-level rule-based paradigms to embodied architectures whose operations are grounded in real physical environments. What is still missing, however, is an overarching theory of intelligent communicative behavior that informs system-level design decisions. This chapter introduces a framework that extends the principles of Perceptual Control Theory (PCT) toward a remarkably symmetric architecture for a needs-driven communicative agent. It is concluded that, if behavior is the control of perception (the central tenet of PCT), then perception (for communicative agents) is the simulation of behavior

    Characterization of covalent inhibitors that disrupt the interaction between the tandem SH2 domains of SYK and FCER1G phospho-ITAM

    Get PDF
    RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer’s disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYKtSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM, however, these compounds lack selectivity and this limits their utility as chemical tools

    Can Machines Think? Interaction and Perspective Taking with Robots Investigated via fMRI

    Get PDF
    Krach S, Hegel F, Wrede B, Sagerer G, Binkofski F, Kircher T. Can Machines Think? Interaction and Perspective Taking with Robots Investigated via fMRI. PLoS ONE. 2008;3(7): e2597.Background When our PC goes on strike again we tend to curse it as if it were a human being. Why and under which circumstances do we attribute human-like properties to machines? Although humans increasingly interact directly with machines it remains unclear whether humans implicitly attribute intentions to them and, if so, whether such interactions resemble human-human interactions on a neural level. In social cognitive neuroscience the ability to attribute intentions and desires to others is being referred to as having a Theory of Mind (ToM). With the present study we investigated whether an increase of human-likeness of interaction partners modulates the participants' ToM associated cortical activity. Methodology/Principal Findings By means of functional magnetic resonance imaging (subjects n = 20) we investigated cortical activity modulation during highly interactive human-robot game. Increasing degrees of human-likeness for the game partner were introduced by means of a computer partner, a functional robot, an anthropomorphic robot and a human partner. The classical iterated prisoner's dilemma game was applied as experimental task which allowed for an implicit detection of ToM associated cortical activity. During the experiment participants always played against a random sequence unknowingly to them. Irrespective of the surmised interaction partners' responses participants indicated having experienced more fun and competition in the interaction with increasing human-like features of their partners. Parametric modulation of the functional imaging data revealed a highly significant linear increase of cortical activity in the medial frontal cortex as well as in the right temporo-parietal junction in correspondence with the increase of human-likeness of the interaction partner (computer<functional robot<anthropomorphic robot<human). Conclusions/Significance Both regions correlating with the degree of human-likeness, the medial frontal cortex and the right temporo-parietal junction, have been associated with Theory-of-Mind. The results demonstrate that the tendency to build a model of another's mind linearly increases with its perceived human-likeness. Moreover, the present data provides first evidence of a contribution of higher human cognitive functions such as ToM in direct interactions with artificial robots. Our results shed light on the long-lasting psychological and philosophical debate regarding human-machine interaction and the question of what makes humans being perceived as human
    • …
    corecore