158 research outputs found

    Dusty Universe viewed by AKARI far infrared detector

    Full text link
    We present the results of the analysis of multiwavelength Spectral Energy Distributions (SEDs) of far-infrared galaxies detected in the AKARI Deep Field-South (ADF--S) Survey. The analysis uses a carefully selected sample of 186 sources detected at the 90 ÎĽ\mum AKARI band, identified as galaxies with cross-identification in public catalogues. For sources without known spectroscopic redshifts, we estimate photometric redshifts after a test of two independent methods: one based on using mainly the optical -- mid infrared range, and one based on the whole range of ultraviolet -- far infrared data. We observe a vast improvement in the estimation of photometric redshifts when far infrared data are included, compared with an approach based mainly on the optical -- mid infrared range. We discuss the physical properties of our far-infrared-selected sample. We conclude that this sample consists mostly of rich in dust and young stars nearby galaxies, and, furthermore, that almost 25% of these sources are (Ultra)Luminous Infrared Galaxies. Average SEDs normalized at 90 ÎĽ\mum for normal galaxies (138 sources), LIRGs (30 sources), and ULIRGs (18 galaxies) a the significant shift in the peak wavelength of the dust emission, and an increasing ratio between their bolometric and dust luminosities which varies from 0.39 to 0.73.Comment: 8 pages, 7 figures, published in Earth, Planets and Spac

    AKARI/IRC Broadband Mid-infrared data as an indicator of Star Formation Rate

    Full text link
    AKARI/Infrared Camera (IRC) Point Source Catalog provides a large amount of flux data at {\it S9W} (9 μm9\ {\rm \mu m}) and {\it L18W} (18 μm18\ {\rm \mu m}) bands. With the goal of constructing Star-Formation Rate(SFR) calculations using IRC data, we analyzed an IR selected GALEX-SDSS-2MASS-AKARI(IRC/Far-Infrared Surveyor) sample of 153 nearby galaxies. The far-infrared fluxes were obtained from AKARI diffuse maps to correct the underestimation for extended sources raised by the point-spread function photometry. SFRs of these galaxies were derived by the spectral energy distribution fitting program CIGALE. In spite of complicated features contained in these bands, both the {\it S9W} and {\it L18W} emission correlate with the SFR of galaxies. The SFR calibrations using {\it S9W} and {\it L18W} are presented for the first time. These calibrations agree well with previous works based on Spitzer data within the scatters, and should be applicable to dust-rich galaxies.Comment: PASJ, in pres

    The infrared emission of ultraviolet selected galaxies from z = 0 to z=1

    Full text link
    We select galaxies in UV rest-frame at z=0, z~0.7 and z~1 together with a sample of LBGs at z~1, the samples are built in order to sample the same range of luminosity at any redshift. The evolution of the IR and UV luminosities with z is analysed for individual galaxies as well as in terms of luminosity functions. The L_IR/L_UV ratio is used to measure dust attenuation. This ratio does not exhibit a strong evolution with z for the bulk of our sample galaxies but some trends are found for galaxies with a strong dust attenuation and for UV luminous sources: galaxies with L_IR/L_UV>10 are more frequent at z>0 than at z=0 and the largest values of L_IR/L_UV are found for UV faint objects; conversely the most luminous galaxies of our samples (L_UV> 2 10^{10} L_sun$), detected at z=1, exhibit a lower dust attenuation than the fainter ones. L_IR/L_UV increases with the K rest-frame luminosity of the galaxies at all the redshifts considered and shows a residual anti-correlation with L_UV. The most massive and UV luminous galaxies exhibit quite large specific star formation rates. LBGs exhibit systematically lower dust attenuation than UV selected galaxies of same luminosity but similar specific star formation rates. The analysis of the UV+IR luminosity functions leads to the conclusion that up to z = 1 most of the star formation activity of UV selected galaxies is emitted in IR. Whereas we are able to retrieve all the star formation from our UV selection at z=0.7, at z = 1 we miss a large fraction of galaxies more luminous than ~ 10^{11} L_sun. The effect is found larger for Lyman Break Galaxies.Comment: 13 pages. accepted for publication (Astronomy and Astrophysics

    Lamin A/C truncation in dilated cardiomyopathy with conduction disease

    Get PDF
    BACKGROUND: Mutations in the gene encoding the nuclear membrane protein lamin A/C have been associated with at least 7 distinct diseases including autosomal dominant dilated cardiomyopathy with conduction system disease, autosomal dominant and recessive Emery Dreifuss Muscular Dystrophy, limb girdle muscular dystrophy type 1B, autosomal recessive type 2 Charcot Marie Tooth, mandibuloacral dysplasia, familial partial lipodystrophy and Hutchinson-Gilford progeria. METHODS: We used mutation detection to evaluate the lamin A/C gene in a 45 year-old woman with familial dilated cardiomyopathy and conduction system disease whose family has been well characterized for this phenotype [1]. RESULTS: DNA from the proband was analyzed, and a novel 2 base-pair deletion c.908_909delCT in LMNA was identified. CONCLUSIONS: Mutations in the gene encoding lamin A/C can lead to significant cardiac conduction system disease that can be successfully treated with pacemakers and/or defibrillators. Genetic screening can help assess risk for arrhythmia and need for device implantation

    Active Disk Building in a local HI-Massive LIRG: The Synergy between Gas, Dust, and Star Formation

    Get PDF
    HIZOA J0836-43 is the most HI-massive (M_HI = 7.5x10^10 Msun) galaxy detected in the HIPASS volume and lies optically hidden behind the Milky Way. Markedly different from other extreme HI disks in the local universe, it is a luminous infrared galaxy (LIRG) with an actively star forming disk (>50 kpc), central to its ~ 130 kpc gas disk, with a total star formation rate (SFR) of ~20.5 Msun yr^{-1}. Spitzer spectroscopy reveals an unusual combination of powerful polycyclic aromatic hydrocarbon (PAH) emission coupled to a relatively weak warm dust continuum, suggesting photodissociation region (PDR)-dominated emission. Compared to a typical LIRG with similar total infrared luminosity (L_TIR=10^11 Lsun), the PAHs in HIZOA J0836-43 are more than twice as strong, whereas the warm dust continuum (lambda > 20micron) is best fit by a star forming galaxy with L_TIR=10^10 Lsun. Mopra CO observations suggest an extended molecular gas component (H_2 + He > 3.7x10^9 Msun) and a lower limit of ~ 64% for the gas mass fraction; this is above average compared to local disk systems, but similar to that of z~1.5 BzK galaxies (~57%). However, the star formation efficiency (SFE = L_IR/L'_CO) for HIZOA J0836-43 of 140 Lsun (K km s^{-1} pc^2)^{-1} is similar to that of local spirals and other disk galaxies at high redshift, in strong contrast to the increased SFE seen in merging and strongly interacting systems. HIZOA J0836-43 is actively forming stars and building a massive stellar disk. Its evolutionary phase of star formation (M_stellar, SFR, gas fraction) compared to more distant systems suggests that it would be considered typical at redshift z~1. This galaxy provides a rare opportunity in the nearby universe for studying (at z~0.036) how disks were building and galaxies evolving at z~1, when similarly large gas fractions were likely more common.Comment: Accepted for publication in The Astrophysical Journal. 16 pages, 8 figure

    Star formation and dust extinction properties of local galaxies from AKARI-GALEX All-Sky Surveys: First results from most secure multiband sample from FUV to FIR

    Full text link
    The AKARI All-Sky Survey provided the first bright point source catalog detected at 90um. Starting from this catalog, we selected galaxies by matching AKARI sources with those in the IRAS PSCz. Next, we have measured total GALEX FUV and NUV flux densities. Then, we have matched this sample with SDSS and 2MASS galaxies. By this procedure, we obtained the final sample which consists of 607 galaxies. If we sort the sample with respect to 90um, their average SED shows a coherent trend: the more luminous at 90um, the redder the global SED becomes. The M_r--NUV-r color-magnitude relation of our sample does not show bimodality, and the distribution is centered on the green valley between the blue cloud and red sequence seen in optical surveys. We have established formulae to convert FIR luminosity from AKARI bands to the total infrared (IR) luminosity L_TIR. With these formulae, we calculated the star formation directly visible with FUV and hidden by dust. The luminosity related to star formation activity (L_SF) is dominated by L_TIR even if we take into account the far-infrared (FIR) emission from dust heated by old stars. At high star formation rate (SFR) (> 20 Msun yr^-1), the fraction of directly visible SFR, SFR_FUV, decreases. We also estimated the FUV attenuation A_FUV from FUV-to-total IR (TIR) luminosity ratio. We also examined the L_TIR/L_FUV-UV slope (FUV- NUV) relation. The majority of the sample has L_TIR/L_FUV ratios 5 to 10 times lower than expected from the local starburst relation, while some LIRGs and all the ULIRGs of this sample have higher L_TIR/L_FUV ratios. We found that the attenuation indicator L_TIR/L_FUV is correlated to the stellar mass of galaxies, M*, but there is no correlation with specific SFR (SSFR), SFR/M*, and dust attenuation L_TIR/L_FUV. (abridged)Comment: 13 pages, 18 figures, accepted for publication in A&

    Analysis of galaxy SEDs from far-UV to far-IR with CIGALE: Studying a SINGS test sample

    Full text link
    Photometric data of galaxies covering the rest-frame wavelength range from far-UV to far-IR make it possible to derive galaxy properties with a high reliability by fitting the attenuated stellar emission and the related dust emission at the same time. For this purpose we wrote the code CIGALE (Code Investigating GALaxy Emission) that uses model spectra composed of the Maraston (or PEGASE) stellar population models, synthetic attenuation functions based on a modified Calzetti law, spectral line templates, the Dale & Helou dust emission models, and optional spectral templates of obscured AGN. Depending on the input redshifts, filter fluxes are computed for the model set and compared to the galaxy photometry by carrying out a Bayesian-like analysis. CIGALE was tested by analysing 39 nearby galaxies selected from SINGS. The reliability of the different model parameters was evaluated by studying the resulting expectation values and their standard deviations in relation to the input model grid. Moreover, the influence of the filter set and the quality of photometric data on the code results was estimated. For up to 17 filters between 0.15 and 160 mum, we find robust results for the mass, star formation rate, effective age of the stellar population at 4000 A, bolometric luminosity, luminosity absorbed by dust, and attenuation in the far-UV. A study of the mutual relations between the reliable properties confirms the dependence of star formation activity on morphology in the local Universe and indicates a significant drop in this activity at about 10^11 M_sol towards higher total stellar masses. The dustiest sample galaxies are present in the same mass range. [abridged]Comment: 22 pages, 21 figures, accepted for publication in A&

    The Herschel Multi-tiered Extragalactic Survey: HerMES

    Get PDF
    The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \mu m), and Herschel-PACS (at 100 and 160 \mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5\sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.Comment: 23 pages, 17 figures, 9 Tables, MNRAS accepte
    • …
    corecore