211 research outputs found
Two-kaon correlations in central Pb + Pb collisions at 158 A GeV/c
Two-particle interferometry of positive kaons is studied in Pb + Pb
collisions at mean transverse momenta and 0.91 GeV/c. A
three-dimensional analysis was applied to the lower data, while a
two-dimensional analysis was used for the higher data. We find that the
source size parameters are consistent with the scaling curve observed in
pion correlation measurements in the same collisions, and that the duration
time of kaon emission is consistent with zero within the experimental
sensitivity.Comment: 4 pages incl. 1 table and 3 fig's; RevTeX; accepted for publication
in PR
Strange Meson Enhancement in PbPb Collisions
The NA44 Collaboration has measured yields and differential distributions of
K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the
center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A
considerable enhancement of K+ production per pi is observed, as compared to
p+p collisions at this energy. To illustrate the importance of secondary hadron
rescattering as an enhancement mechanism, we compare strangeness production at
the SPS and AGS with predictions of the transport model RQMD.Comment: 11 pages, including 4 figures, LATE
Nuclear Clusters as a Probe for Expansion Flow in Heavy Ion Reactions at 10-15AGeV
A phase space coalescence description based on the Wigner-function method for
cluster formation in relativistic nucleus-nucleus collisions is presented. The
momentum distributions of nuclear clusters d,t and He are predicted for central
Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD
transport approach. Transverse expansion leads to a strong shoulder-arm shape
and different inverse slope parameters in the transverse spectra of nuclear
clusters deviating markedly from thermal distributions. A clear ``bounce-off''
event shape is seen: the averaged transverse flow velocities in the reaction
plane are for clusters larger than for protons. The cluster yields
--particularly at low at midrapidities-- and the in-plane (anti)flow of
clusters and pions change if suitably strong baryon potential interactions are
included. This allows to study the transient pressure at high density via the
event shape analysis of nucleons, nucleon clusters and other hadrons.Comment: 38 pages, 9 figures, LaTeX type, eps used, subm. to Phys. Rev.
Centrality Dependence of Charged Particle Multiplicity in Au-Au Collisions at sqrt(s_NN)=130 GeV
We present results for the charged-particle multiplicity distribution at
mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the
PHENIX detector at RHIC. For the 5% most central collisions we find
. The results,
analyzed as a function of centrality, show a steady rise of the particle
density per participating nucleon with centrality.Comment: 307 authors, 43 institutions, 6 pages, 4 figures, 1 table Minor
changes to figure labels and text to meet PRL requirements. One author added:
M. Hibino of Waseda Universit
Centrality dependence of pi^[+/-], K^[+/-], p and p-bar production from sqrt(s_NN)=130 GeV Au + Au collisions at RHIC
Identified pi^[+/-] K^[+/-], p and p-bar transverse momentum spectra at
mid-rapidity in sqrt(s_NN)=130 GeV Au-Au collisions were measured by the PHENIX
experiment at RHIC as a function of collision centrality. Average transverse
momenta increase with the number of participating nucleons in a similar way for
all particle species. The multiplicity densities scale faster than the number
of participating nucleons. Kaon and nucleon yields per participant increase
faster than the pion yields. In central collisions at high transverse momenta
(p_T greater than 2 GeV/c), anti-proton and proton yields are comparable to the
pion yields.Comment: 6 pages, 3 figures, 1 table, 307 authors, accepted by Phys. Rev.
Lett. on 9 April 2002. This version has minor changes made in response to
referee Comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Two-Proton Correlations near Midrapidity in p+Pb and S+Pb Collisions at the CERN SPS
Correlations of two protons emitted near midrapidity in p+Pb collisions at
450 GeV/c and S+Pb collisions at 200A GeV/c are presented, as measured by the
NA44 Experiment. The correlation effect, which arises as a result of final
state interactions and Fermi-Dirac statistics, is related to the space-time
characteristics of proton emission. The measured source sizes are smaller than
the size of the target lead nucleus but larger than the sizes of the
projectiles. A dependence on the collision centrality is observed; the source
size increases with decreasing impact parameter. Proton source sizes near
midrapidity appear to be smaller than those of pions in the same interactions.
Quantitative agreement with the results of RQMD (v1.08) simulations is found
for p+Pb collisions. For S+Pb collisions the measured correlation effect is
somewhat weaker than that predicted by the model simulations, implying either a
larger source size or larger contribution of protons from long-lived particle
decays.Comment: 10 pages (LaTeX) text, 4 (EPS) figures; accepted for publication in
Phys. Lett.
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
Charged kaon and pion production at midrapidity in proton nucleus and sulphur nucleus collisions
The NA44 collaboration has measured charged kaon and pion distributions at midrapidity in sulphur and proton collisions with nuclear targets at 200 and 450 GeV/c per nucleon, respectively. The inverse slopes of kaons are larger than those of pions. The difference in the inverse slopes of pions, kaons and protons, all measured in our spectrometer, increases with system size and is consistent with the buildup of collective flow for larger systems. The target dependence of both the yields and inverse slopes is stronger for the sulphur beam suggesting the increased importance of secondary rescattering for SA reactions. The rapidity density, dN/dy, of both K+ and K- increases more rapidly with system size than for pi+ in a similar rapidity region. This trend continues with increasing centrality, and according to RQMD, it is caused by secondary reactions between mesons and baryons. The K-/K+ ratio falls with increasing system size but more slowly than the pbar/p ratio. The pi-/pi+ ratio is close to unity for all systems. From pBe to SPb the K+/p ratio decreases while K-/pbar increases and ({K+*K-}/{p*pbar})**1/2 stays constant. These data suggest that as larger nuclei collide, the resulting system has a larger transverse expansion, baryon density and an increasing fraction of strange quarks.The NA44 collaboration has measured charged kaon and pion distributions at midrapidity in sulphur and proton collisions with nuclear targets at 200 and 450 GeV/c per nucleon, respectively. The inverse slopes of kaons are larger than those of pions. The difference in the inverse slopes of pions, kaons and protons, all measured in our spectrometer, increases with system size and is consistent with the buildup of collective flow for larger systems. The target dependence of both the yields and inverse slopes is stronger for the sulphur beam suggesting the increased importance of secondary rescattering for SA reactions. The rapidity density, dN/dy, of both K+ and K- increases more rapidly with system size than for pi+ in a similar rapidity region. This trend continues with increasing centrality, and according to RQMD, it is caused by secondary reactions between mesons and baryons. The K-/K+ ratio falls with increasing system size but more slowly than the pbar/p ratio. The pi-/pi+ ratio is close to unity for all systems. From pBe to SPb the K+/p ratio decreases while K-/pbar increases and ({K+*K-}/{p*pbar})**1/2 stays constant. These data suggest that as larger nuclei collide, the resulting system has a larger transverse expansion, baryon density and an increasing fraction of strange quarks.The NA44 collaboration has measured charged kaon and pion distributions at midrapidity in sulphur and proton collisions with nuclear targets at 200 and 450 GeV/c per nucleon, respectively. The inverse slopes of kaons are larger than those of pions. The difference in the inverse slopes of pions, kaons and protons, all measured in our spectrometer, increases with system size and is consistent with the buildup of collective flow for larger systems. The target dependence of both the yields and inverse slopes is stronger for the sulphur beam suggesting the increased importance of secondary rescattering for SA reactions. The rapidity density, dN/dy, of both K+ and K- increases more rapidly with system size than for pi+ in a similar rapidity region. This trend continues with increasing centrality, and according to RQMD, it is caused by secondary reactions between mesons and baryons. The K-/K+ ratio falls with increasing system size but more slowly than the pbar/p ratio. The pi-/pi+ ratio is close to unity for all systems. From pBe to SPb the K+/p ratio decreases while K-/pbar increases and ({K+*K-}/{p*pbar})**1/2 stays constant. These data suggest that as larger nuclei collide, the resulting system has a larger transverse expansion, baryon density and an increasing fraction of strange quarks
- …
