148 research outputs found

    A bioturbation classification of European marine infaunal invertebrates

    Get PDF
    Bioturbation, the biogenic modification of sediments through particle reworking and burrow ventilation, is a key mediator of many important geochemical processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and resources not always available, and not feasible in some settings. Where dedicated research programmes do not exist, a practical alternative is the adoption of a trait-based approach to estimate community bioturbation potential (BPc). This index can be calculated from inventories of species, abundance and biomass data (routinely available for many systems), and a functional classification of organism traits associated with sediment mixing (less available). Presently, however, there is no agreed standard categorization for the reworking mode and mobility of benthic species. Based on information from the literature and expert opinion, we provide a functional classification for 1033 benthic invertebrate species from the northwest European continental shelf, as a tool to enable the standardized calculation of BPc in the region. Future uses of this classification table will increase the comparability and utility of large-scale assessments of ecosystem processes and functioning influenced by bioturbation (e.g., to support legislation). The key strengths, assumptions, and limitations of BPc as a metric are critically reviewed, offering guidelines for its calculation and application

    Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning

    Get PDF
    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.

    Direct and host-mediated interactions between Fusarium pathogens and herbivorous arthropods in cereals

    Get PDF
    Fusarium head blight and fusarium ear rot diseases of cereal crops are significant global problems, causing yield and grain quality losses and accumulation of harmful mycotoxins. Safety limits have been set by the European Commission for several Fusarium-produced mycotoxins; mitigating the risk of breaching these limits is of great importance to crop producers as part of an integrated approach to disease management. This review examines current knowledge regarding the role of arthropods in disease epidemiology. In the field, diseased host plants are likely to interact with arthropods that may substantially impact the disease by influencing spread or condition of the shared host. For example, disease progress by Fusarium graminearum can be doubled if wheat plants are aphid-infested. Arthropods have been implicated in disease epidemiology in several cases and the evidence ranges from observed correlations between arthropod infestation and increased disease severity and mycotoxin accumulation, to experimental evidence for arthropod infestation causing heightened pathogen prevalence in hosts. Fusarium pathogens differ in spore production and impact on host volatile chemistry, which influences their suitability for arthropod dispersal. Herbivores may allow secondary fungal infection after wounding a plant or they may alter host susceptibility by inducing changes in plant defence pathways. Post-harvest, during storage, arthropods may also interact with Fusarium pathogens, with instances of fungivory and altered behaviour by arthropods towards volatile chemicals from infected grain. Host-mediated indirect pathogen–arthropod interactions are discussed alongside a comprehensive review of evidence for direct interactions where arthropods act as vectors for inoculum

    cIMPACT‐NOW update 7: advancing the molecular classification of ependymal tumors

    Full text link
    Advances in our understanding of the biological basis and molecular characteristics of ependymal tumors since the latest iteration of the World Health Organization (WHO) classification of CNS tumors (2016) have prompted the cIMPACT‐NOW group to recommend a new classification. Separation of ependymal tumors by anatomic site is an important principle of the new classification and was prompted by methylome profiling data to indicate that molecular groups of ependymal tumors in the posterior fossa and supratentorial and spinal compartments are distinct. Common recurrent genetic or epigenetic alterations found in tumors belonging to the main molecular groups have been used to define tumor types at intracranial sites; C11orf95 and YAP1 fusion genes for supratentorial tumors and two types of posterior fossa ependymoma defined by methylation group, PFA and PFB. A recently described type of aggressive spinal ependymoma with MYCN amplification has also been included. Myxopapillary ependymoma and subependymoma have been retained as histopathologically defined tumor types, but the classification has dropped the distinction between classic and anaplastic ependymoma. While the cIMPACT‐NOW group considered that data to inform assignment of grade to molecularly defined ependymomas are insufficiently mature, it recommends assigning WHO grade 2 to myxopapillary ependymoma and allows grade 2 or grade 3 to be assigned to ependymomas not defined by molecular status.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162791/2/bpa12866_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162791/1/bpa12866.pd

    Assessing the distribution of volatile organic compounds using land use regression in Sarnia, "Chemical Valley", Ontario, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Land use regression (LUR) modelling is proposed as a promising approach to meet some of the challenges of assessing the intra-urban spatial variability of ambient air pollutants in urban and industrial settings. However, most of the LUR models to date have focused on nitrogen oxides and particulate matter. This study aimed at developing LUR models to predict BTEX (benzene, toluene, ethylbenzene, m/p-xylene and o-xylene) concentrations in Sarnia, 'Chemical Valley', Ontario, and model the intra-urban variability of BTEX compounds in the city for a community health study.</p> <p>Method</p> <p>Using Organic Vapour Monitors, pollutants were monitored at 39 locations across the city of Sarnia for 2 weeks in October 2005. LUR models were developed to generate predictor variables that best estimate BTEX concentrations.</p> <p>Results</p> <p>Industrial area, dwelling counts, and highways adequately explained most of the variability of BTEX concentrations (<it>R</it><sup>2</sup>: 0.78 – 0.81). Correlations between measured BTEX compounds were high (> 0.75). Although most of the predictor variables (e.g. land use) were similar in all the models, their individual contributions to the models were different.</p> <p>Conclusion</p> <p>Yielding potentially different health effects than nitrogen oxides and particulate matter, modelling other air pollutants is essential for a better understanding of the link between air pollution and health. The LUR models developed in these analyses will be used for estimating outdoor exposure to BTEX for a larger community health study aimed at examining the determinants of health in Sarnia.</p

    Challenges to curing primary brain tumours

    Get PDF
    Despite decades of research, brain tumours remain among the deadliest of all forms of cancer. The ability of these tumours to resist almost all conventional and novel treatments relates, in part, to the unique cell-intrinsic and microenvironmental properties of neural tissues. In an attempt to encourage progress in our understanding and ability to successfully treat patients with brain tumours, Cancer Research UK convened an international panel of clinicians and laboratory-based scientists to identify challenges that must be overcome if we are to cure all patients with a brain tumour. The seven key challenges summarized in this Position Paper are intended to serve as foci for future research and investment

    Challenges to curing primary brain tumours.

    Get PDF
    Despite decades of research, brain tumours remain among the deadliest of all forms of cancer. The ability of these tumours to resist almost all conventional and novel treatments relates, in part, to the unique cell-intrinsic and microenvironmental properties of neural tissues. In an attempt to encourage progress in our understanding and ability to successfully treat patients with brain tumours, Cancer Research UK convened an international panel of clinicians and laboratory-based scientists to identify challenges that must be overcome if we are to cure all patients with a brain tumour. The seven key challenges summarized in this Position Paper are intended to serve as foci for future research and investment

    Oral abstracts of the 21st International AIDS Conference 18-22 July 2016, Durban, South Africa

    Get PDF
    The rate at which HIV-1 infected individuals progress to AIDS is highly variable and impacted by T cell immunity. CD8 T cell inhibitory molecules are up-regulated in HIV-1 infection and associate with immune dysfunction. We evaluated participants (n=122) recruited to the SPARTAC randomised clinical trial to determine whether CD8 T cell exhaustion markers PD-1, Lag-3 and Tim-3 were associated with immune activation and disease progression.Expression of PD-1, Tim-3, Lag-3 and CD38 on CD8 T cells from the closest pre-therapy time-point to seroconversion was measured by flow cytometry, and correlated with surrogate markers of HIV-1 disease (HIV-1 plasma viral load (pVL) and CD4 T cell count) and the trial endpoint (time to CD4 count <350 cells/μl or initiation of antiretroviral therapy). To explore the functional significance of these markers, co-expression of Eomes, T-bet and CD39 was assessed.Expression of PD-1 on CD8 and CD38 CD8 T cells correlated with pVL and CD4 count at baseline, and predicted time to the trial endpoint. Lag-3 expression was associated with pVL but not CD4 count. For all exhaustion markers, expression of CD38 on CD8 T cells increased the strength of associations. In Cox models, progression to the trial endpoint was most marked for PD-1/CD38 co-expressing cells, with evidence for a stronger effect within 12 weeks from confirmed diagnosis of PHI. The effect of PD-1 and Lag-3 expression on CD8 T cells retained statistical significance in Cox proportional hazards models including antiretroviral therapy and CD4 count, but not pVL as co-variants.Expression of ‘exhaustion’ or ‘immune checkpoint’ markers in early HIV-1 infection is associated with clinical progression and is impacted by immune activation and the duration of infection. New markers to identify exhausted T cells and novel interventions to reverse exhaustion may inform the development of novel immunotherapeutic approaches
    corecore