273 research outputs found

    Cell wall chemotyping for functional genomics

    Get PDF
    The interest in lignocellulose as a sustainable resource for energy and materials has fueled research on biotechnology applications in tree breeding to improve biomass production and wood properties. An important aspect of this research is the basic understanding of gene function in wood formation, where analysis of wood chemistry and wood structure is of utmost importance. Current research strategies often involve large-scale screening of plant material, and therefore there is a need for rapid chemical characterisation and classification (chemotyping) of samples. Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS) provides a chemical fingerprint with more than hundred peaks representing each sample. Despite the fact that the technique is very informative, the wealth of data resulting from each sample has prohibited its use as a high–throughput method in large scale projects. For this reason, a novel application of Py-GC/MS was developed. An automated data processing pipeline was created and implemented, which together with a new simplified rule-set to analyse Py-GC/MS data overcame the bottleneck of time-consuming data handling. The added value of the method was demonstrated by fingerprinting and classifying the wood of 736 transgenic hybrid aspen (Populus tremula x tremuloides) trees representing 44 different genotypes. Among these genes were fructokinases (FRK1 and 2) and sucrose synthase (SUS) isoforms, both involved in primary carbon metabolism. A battery of chemotyping tools demonstrated that the downregulation of FRK resulted more specifically in a decrease in cellulose biosynthesis, whereas the repression of SUS affected the amount of all of the major wood polymers. It was further demonstrated that the wood of transgenic SUS trees was affected in structure and mechanical properties. In another study, it was shown that down-regulating a lignin biosynthetic gene, cinnamate 4-hydroxylase, resulted in a modified wood structure in hybrid aspen. Interestingly, the large reduction in lignin content resulted in only minor effects on the ultimate tensile strength of the wood. Finally, the battery of chemotyping tools was used in a study to show that the transcription factor MYB103 is required for ferrulate-5-hydroxylase (F5H) expression and S-lignin biosynthesis in Arabidopsis thaliana

    PRM49 TRANSLATION AND LINGUISTIC VALIDATION – METHODOLOGICAL IMPLICATIONS WHEN THE SOURCE MEASURE IS NOT ENGLISH

    Get PDF

    Enhancement of Secondary Cell Wall Formation in Poplar Xylem Using a Self-Reinforced System of Secondary Cell Wall-Related Transcription Factors

    Get PDF
    The secondary cell wall (SCW) in the xylem is one of the largest sink organs of carbon in woody plants, and is considered a promising sustainable bioresource for biofuels and biomaterials. To enhance SCW formation in poplar (Populus sp.) xylem, we developed a self-reinforced system of SCW-related transcription factors from Arabidopsis thaliana, involving VASCULAR-RELATED NAC-DOMAIN7 (VND7), SECONDARY WALL-ASSOCIATED NAC-DOMAIN PROTEIN 1/NAC SECONDARY WALL THICKENING-PROMOTING FACTOR3 (SND1/NST3), and MYB46. In this system, these transcription factors were fused with the transactivation domain VP16 and expressed under the control of the Populus trichocarpa CesA18 (PtCesA18) gene promoter, creating the chimeric genes PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16. The PtCesA18 promoter is active in tissues generating SCWs, and can be regulated by AtVND7, AtSND1, and AtMYB46; thus, the expression levels of PtCesA18pro::AtVND7:VP16, PtCesA18pro::AtSND1:VP16, and PtCesA18pro::AtMYB46:VP16 are expected to be boosted in SCW-generating tissues. In the transgenic hybrid aspens (Populus tremula x tremuloides T89) expressing PtCesA18pro::AtSND1:VP16 or PtCesA18pro::AtMYB46:VP16 grown in sterile half-strength Murashige and Skoog growth medium, SCW thickening was significantly enhanced in the secondary xylem cells, while the PtCesA18pro::AtVND7:VP16 plants showed stunted xylem formation, possibly because of the enhanced programmed cell death (PCD) in the xylem regions. After acclimation, the transgenic plants were transferred from the sterile growth medium to pots of soil in the greenhouse, where only the PtCesA18pro::AtMYB46:VP16 aspens survived. A nuclear magnetic resonance footprinting cell wall analysis and enzymatic saccharification analysis demonstrated that PtCesA18pro::AtMYB46:VP16 influences cell wall properties such as the ratio of syringyl (S) and guaiacyl (G) units of lignin, the abundance of the lignin beta-aryl ether and resinol bonds, and hemicellulose acetylation levels. Together, these data indicate that we have created a self-reinforced system using SCW-related transcription factors to enhance SCW accumulation

    Stratosphere‐troposphere coupling and annular mode variability in chemistry‐climate models

    Get PDF
    The internal variability and coupling between the stratosphere and troposphere in CCMVal‐2 chemistry‐climate models are evaluated through analysis of the annular mode patterns of variability. Computation of the annular modes in long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The spatial and temporal structure of the models’ annular modes is then compared with that of reanalyses. As a whole, the models capture the key features of observed intraseasonal variability, including the sharp vertical gradients in structure between stratosphere and troposphere, the asymmetries in the seasonal cycle between the Northern and Southern hemispheres, and the coupling between the polar stratospheric vortices and tropospheric midlatitude jets. It is also found that the annular mode variability changes little in time throughout simulations of the 21st century. There are, however, both common biases and significant differences in performance in the models. In the troposphere, the annular mode in models is generally too persistent, particularly in the Southern Hemisphere summer, a bias similar to that found in CMIP3 coupled climate models. In the stratosphere, the periods of peak variance and coupling with the troposphere are delayed by about a month in both hemispheres. The relationship between increased variability of the stratosphere and increased persistence in the troposphere suggests that some tropospheric biases may be related to stratospheric biases and that a well‐simulated stratosphere can improve simulation of tropospheric intraseasonal variability

    Statistical Physics in Meteorology

    Full text link
    Various aspects of modern statistical physics and meteorology can be tied together. The historical importance of the University of Wroclaw in the field of meteorology is first pointed out. Next, some basic difference about time and space scales between meteorology and climatology is outlined. The nature and role of clouds both from a geometric and thermal point of view are recalled. Recent studies of scaling laws for atmospheric variables are mentioned, like studies on cirrus ice content, brightness temperature, liquid water path fluctuations, cloud base height fluctuations, .... Technical time series analysis approaches based on modern statistical physics considerations are outlined.Comment: Short version of an invited paper at the XXIth Max Born symposium,Ladek Zdroj, Poland; Sept. 200
    corecore