

Biomass reaction engineering driving genetic modification

<u>Kevin M. Van Geem¹</u>, Ezgi Hilal Toraman¹, Michiel Schietse¹, Eleonora Boren^{2,3}, Ruben Vanholme², Lorenz Gerber³, Marko Djokic¹, Guray Yildiz⁴, Frederick Ronsse⁴, Wolter Prins⁴, Björn Sundberg³, Wout Boerjan² and Guy B. Marin¹

(1)Department of Chemical technology, Ghent University, Ghent, Belgium, (2)Department of Plant Systems Biology, VIB, Ghent, Belgium, (3)Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden, (4)Department of Biosystems engineering, Ghent University, Ghent, Belgium

Laboratory for Chemical Technology, Ghent University

AIChE Annual meeting, San Francisco, US, 06/11/2013

- Global introduction
- Feedstock and lignin pathway
- Pyrolysis experiments
 - Micro pyrolysis
 - Sand bed pyrolysis reactor
- Conclusions

Biomass

all organic materials that come from plants, trees, crops, and algae

Fast pyrolysis process

Bio-oil characteristics and upgrading

Characteristics

- Complex mixture of several hundred compounds
- Not miscible with conventional petroleum fractions
- Chemically unstable; instability increases with heating
- Ageing of the liquid, causes unusual time-dependent behaviour
- Viscosity increases with time

Improvement of these characteristics?

Upgrading

Hydrodeoxygenation (HDO)	•	Oxygen containing components are converted into aliphatic and aromatic components
	•	Consumption of H ₂
	•	Heterogeneous catalyst
	•	Instability is mainly caused by presence of reactive ketones and aldehydes (Venderbosch, 2012)
	•	Alcohols are much more stable and have good combustion properties

Major hurdles for biomass fast pyrolysis

Composition strongly depends on origin biomass

- kinetic study: set-up and product analysis
- chemistry: C/H/O different from and more complex than C/H
- Mechanistic modeling: "molecular" representation impossible

Conference, City, Date (adjust through header and footer)

Proof of concept: single gene modification

- Global introduction
- Feedstock and lignin pathway
- Pyrolysis experiments
 - Micro pyrolysis
 - Sand bed pyrolysis reactor
- Conclusions

Biomass feedstock

Lignin pathway

Biomass feedstocks

• 16 samples

1	10B	COMT-ASB10B
2	10B	COMT-ASB10B
3	WT	WT-Biological
4	WT	WT-Biological
5	CAD21	CAD T21
6	CAD21	CAD T21
7	2B	COMT ASB2B-2
8	2B	COMT ASB2B-2
9	2CoA-416	CCoAOMT-416
10	2CoA-416	CCoAOMT-416
11	CCOA-429	CCoAOMT-429
12	CCoA-429	CCoAOMT-429
13	WT	WT-Technical
14	WT	WT-Technical
15	WT	WT-Technical
16	WT	WT-Biological

- Global introduction
- Feedstock and lignin pathway
- Pyrolysis experiments
 - Micro pyrolysis
 - Sand bed pyrolysis reactor
- Conclusions

Micropyrolysis: set-up & methodology

Set-up

Methodology 1. Identification of the 41 most abundant components

- 2. Comparison of applying the normalised or the nonnormalised data for PCA
- Statistical analysis of the data: each includes the comparison of one of the different transgenic lines with WT

Samples and raw pyrolysis data

Identification of 45 components for each of the 15 samples

Is there a **difference** between the samples? Is this difference **statistically significant**?

PCA & K-Means clustering

Principal Component Analysis

Score plot

PC1

Projection of observation i

 X_2

1) Subtract the normalized data with the mean and divide with the standard deviation X₃ 2Cortstructinewavariables which contain most $= \frac{p_{i,j} - \mu_j}{2}$ 3) Dearianteeignesetprifothiesel & tasetigenvalues (L) $C = \frac{1}{n-1} \cdot \tilde{P}^T \tilde{P}$ PC2 4) Select the PC that contain the most variance in the data set
→ Observe paterns more easily
5) Calculate the scores of each PC $V^T, C, V = L$ Samples k $S = \tilde{P} V$ S_{ip} : Step v_{jp} is the loading $C_{x_{ij}}$ is the concentr able, on PC f compound for the ith sample

K-Means clustering

- Select initial amount of clusters 1)
- Chose the initial cluster centroids 2)
- 3) Calculate the Mahalanobis Distance (MD) for each sample with respect to each centroid $MD_{ik} = \sqrt{(x_i - \mu_k)^T C^{-1} (x_i - \mu_k)}$
- Assign each sample to a cluster and recalculate cluster centroid 4)
- Iterate till converged 5)
- 6) Draw the **confidence interval** (95%) that contains all data similar to the cluster centroid

$$T^{2} = \frac{p.(n-1)}{n-p} \cdot F_{p,n-p;0.05} = MD^{2}$$

GC-MS results

- Global introduction
- Feedstock and lignin pathway
- Pyrolysis experiments
 - Micro pyrolysis
 - Sand bed pyrolysis reactor
- Conclusions

Pyrolysis experiments on the tube reactor

Elemental analysis: results

2D Gas chromatography for bio-oils

Van Geem, Pyl, et al. J. Chrom. A. 2010

Results: comparison crude oils

GC×GC-MS/FID: methodology and results

Ņ

φ

S2 10B

-10

pc1

Reason(s): CCoAOMT modification

- Global introduction
- Feedstock and lignin pathway
- Pyrolysis experiments
 - Micro pyrolysis
 - Sand bed pyrolysis reactor
- Conclusions

Conclusions

- \checkmark Fast pyrolysis of biomass is a promising process
 - Crucial to gain insight in the inherent process and kinetics
 - Not all oxygen containing compounds in bio-oil are bad
- ✓ Detailed analysis of complex bio-oils can be obtained with GC×GC-FID/TOF-MS
 - Effect feedstock and/or catalytic treatment can be detected
 - 2D separation is crucial
- ✓ Hypotheses of COMT and CAD transgenic groups are validated
 - COMT differs the most of WT; S units lowered, G units higher. (More pronounced with 2B than 10B)
 - CAD contain more S aldehydes compared to the WT
 - No distinctive difference observed between CCoAOMT compared to WT

