75 research outputs found

    Communication style and exercise compliance in physiotherapy (CONNECT). A cluster randomized controlled trial to test a theory-based intervention to increase chronic low back pain patients’ adherence to physiotherapists’ recommendations: study rationale, design, and methods

    Get PDF
    Physical activity and exercise therapy are among the accepted clinical rehabilitation guidelines and are recommended self-management strategies for chronic low back pain. However, many back pain sufferers do not adhere to their physiotherapist’s recommendations. Poor patient adherence may decrease the effectiveness of advice and home-based rehabilitation exercises. According to self-determination theory, support from health care practitioners can promote patients’ autonomous motivation and greater long-term behavioral persistence (e.g., adherence to physiotherapists’ recommendations). The aim of this trial is to assess the effect of an intervention designed to increase physiotherapists’ autonomy-supportive communication on low back pain patients’ adherence to physical activity and exercise therapy recommendations. \ud \ud This study will be a single-blinded cluster randomized controlled trial. Outpatient physiotherapy centers (N =12) in Dublin, Ireland (population = 1.25 million) will be randomly assigned using a computer-generated algorithm to either the experimental or control arm. Physiotherapists in the experimental arm (two hospitals and four primary care clinics) will attend eight hours of communication skills training. Training will include handouts, workbooks, video examples, role-play, and discussion designed to teach physiotherapists how to communicate in a manner that promotes autonomous patient motivation. Physiotherapists in the waitlist control arm (two hospitals and four primary care clinics) will not receive this training. Participants (N = 292) with chronic low back pain will complete assessments at baseline, as well as 1 week, 4 weeks, 12 weeks, and 24 weeks after their first physiotherapy appointment. Primary outcomes will include adherence to physiotherapy recommendations, as well as low back pain, function, and well-being. Participants will be blinded to treatment allocation, as they will not be told if their physiotherapist has received the communication skills training. Outcome assessors will also be blinded. \ud \ud We will use linear mixed modeling to test between arm differences both in the mean levels and the rates of change of the outcome variables. We will employ structural equation modeling to examine the process of change, including hypothesized mediation effects. \ud \ud This trial will be the first to test the effect of a self-determination theory-based communication skills training program for physiotherapists on their low back pain patients’ adherence to rehabilitation recommendations. Current Controlled Trials ISRCTN63723433\u

    Synthesis of discussions of the Second Koala Retrovirus Workshop, 2021

    Get PDF
    This document represents a synthesis of discussions held online at the Second Koala Retrovirus Workshop in 2021. The three days of discussions were based on workshop presentations and comprise: KoRV foundational science (Day 1); applied management of koalas in zoo populations (Day 2); and applied management of koalas in wild populations (Day 3). Each of these discussions gathers current knowledge, explores points of consensus and disagreement, and identifies important knowledge gaps. Recommendations arise regarding research strategy, interim measures for management, and support of research and management via initiation of working groups on KoRV diagnostics and biobanking

    A Novel Bocavirus Associated with Acute Gastroenteritis in Australian Children

    Get PDF
    Acute gastroenteritis (AGE) is a common illness affecting all age groups worldwide, causing an estimated three million deaths annually. Viruses such as rotavirus, adenovirus, and caliciviruses are a major cause of AGE, but in many patients a causal agent cannot be found despite extensive diagnostic testing. Proposing that novel viruses are the reason for this diagnostic gap, we used molecular screening to investigate a cluster of undiagnosed cases that were part of a larger case control study into the etiology of pediatric AGE. Degenerate oligonucleotide primed (DOP) PCR was used to non-specifically amplify viral DNA from fecal specimens. The amplified DNA was then cloned and sequenced for analysis. A novel virus was detected. Elucidation and analysis of the genome indicates it is a member of the Bocavirus genus of the Parvovirinae, 23% variant at the nucleotide level from its closest formally recognized relative, the Human Bocavirus (HBoV), and similar to the very recently proposed second species of Bocavirus (HBoV2). Fecal samples collected from case control pairs during 2001 for the AGE study were tested with a bocavirus-specific PCR, and HBoV2 (sequence confirmed) was detected in 32 of 186 cases with AGE (prevalence 17.2%) compared with only 15 controls (8.1%). In this same group of children, HBoV2 prevalence was exceeded only by rotavirus (39.2%) and astrovirus (21.5%) and was more prevalent than norovirus genogroup 2 (13.4%) and adenovirus (4.8%). In a univariate analysis of the matched pairs (McNemar's Test), the odds ratio for the association of AGE with HBoV2 infection was 2.6 (95% confidence interval 1.2–5.7); P = 0.007. During the course of this screening, a second novel bocavirus was detected which we have designated HBoV species 3 (HBoV3). The prevalence of HBoV3 was low (2.7%), and it was not associated with AGE. HBoV2 and HBoV3 are newly discovered bocaviruses, of which HBoV2 is the thirdmost-prevalent virus, after rotavirus and astrovirus, associated with pediatric AGE in this study

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    Effect of genetic testing for risk of type 2 diabetes mellitus on health behaviors and outcomes: study rationale, development and design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 diabetes is a prevalent chronic condition globally that results in extensive morbidity, decreased quality of life, and increased health services utilization. Lifestyle changes can prevent the development of diabetes, but require patient engagement. Genetic risk testing might represent a new tool to increase patients' motivation for lifestyle changes. Here we describe the rationale, development, and design of a randomized controlled trial (RCT) assessing the clinical and personal utility of incorporating type 2 diabetes genetic risk testing into comprehensive diabetes risk assessments performed in a primary care setting.</p> <p>Methods/Design</p> <p>Patients are recruited in the laboratory waiting areas of two primary care clinics and enrolled into one of three study arms. Those interested in genetic risk testing are randomized to receive <it>either </it>a standard risk assessment (SRA) for type 2 diabetes incorporating conventional risk factors plus upfront disclosure of the results of genetic risk testing ("SRA+G" arm), <it>or </it>the SRA alone ("SRA" arm). Participants not interested in genetic risk testing will not receive the test, but will receive SRA (forming a third, "no-test" arm). Risk counseling is provided by clinic staff (not study staff external to the clinic). Fasting plasma glucose, insulin levels, body mass index (BMI), and waist circumference are measured at baseline and 12 months, as are patients' self-reported behavioral and emotional responses to diabetes risk information. Primary outcomes are changes in insulin resistance and BMI after 12 months; secondary outcomes include changes in diet patterns, physical activity, waist circumference, and perceived risk of developing diabetes.</p> <p>Discussion</p> <p>The utility, feasibility, and efficacy of providing patients with genetic risk information for common chronic diseases in primary care remain unknown. The study described here will help to establish whether providing type 2 diabetes genetic risk information in a primary care setting can help improve patients' clinical outcomes, risk perceptions, and/or their engagement in healthy behavior change. In addition, study design features such as the use of existing clinic personnel for risk counseling could inform the future development and implementation of care models for the use of individual genetic risk information in primary care.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00849563">NCT00849563</a></p

    Integrated Approach Reveals Role of Mitochondrial Germ-Line Mutation F18L in Respiratory Chain, Oxidative Alterations, Drug Sensitivity, and Patient Prognosis in Glioblastoma

    Get PDF
    Glioblastoma is the most common and malignant primary brain tumour in adults, with a dismal prognosis. This is partly due to considerable inter- and intra-tumour heterogeneity. Changes in the cellular energy-producing mitochondrial respiratory chain complex (MRC) activities are a hallmark of glioblastoma relative to the normal brain, and associate with differential survival outcomes. Targeting MRC complexes with drugs can also facilitate anti-glioblastoma activity. Whether mutations in the mitochondrial DNA (mtDNA) that encode several components of the MRC contribute to these phenomena remains underexplored. We identified a germ-line mtDNA mutation (m. 14798T &gt; C), enriched in glioblastoma relative to healthy controls, that causes an amino acid substitution F18L within the core mtDNA-encoded cytochrome b subunit of MRC complex III. F18L is predicted to alter corresponding complex III activity, and sensitivity to complex III-targeting drugs. This could in turn alter reactive oxygen species (ROS) production, cell behaviour and, consequently, patient outcomes. Here we show that, despite a heterogeneous mitochondrial background in adult glioblastoma patient biopsy-derived cell cultures, the F18L substitution associates with alterations in individual MRC complex activities, in particular a 75% increase in MRC complex II_III activity, and a 34% reduction in CoQ10, the natural substrate for MRC complex III, levels. Downstream characterisation of an F18L-carrier revealed an 87% increase in intra-cellular ROS, an altered cellular distribution of mitochondrial-specific ROS, and a 64% increased sensitivity to clomipramine, a repurposed MRC complex III-targeting drug. In patients, F18L-carriers that received the current standard of care treatment had a poorer prognosis than non-carriers (373 days vs. 415 days, respectively). Single germ-line mitochondrial mutations could predispose individuals to differential prognoses, and sensitivity to mitochondrial targeted drugs. Thus, F18L, which is present in blood could serve as a useful non-invasive biomarker for the stratification of patients into prognostically relevant groups, one of which requires a lower dose of clomipramine to achieve clinical effect, thus minimising side-effects

    Genetic Determinants of Serum Testosterone Concentrations in Men

    Get PDF
    Testosterone concentrations in men are associated with cardiovascular morbidity, osteoporosis, and mortality and are affected by age, smoking, and obesity. Because of serum testosterone's high heritability, we performed a meta-analysis of genome-wide association data in 8,938 men from seven cohorts and followed up the genome-wide significant findings in one in silico (n = 871) and two de novo replication cohorts (n = 4,620) to identify genetic loci significantly associated with serum testosterone concentration in men. All these loci were also associated with low serum testosterone concentration defined as <300 ng/dl. Two single-nucleotide polymorphisms at the sex hormone-binding globulin (SHBG) locus (17p13-p12) were identified as independently associated with serum testosterone concentration (rs12150660, p = 1.2×10−41 and rs6258, p = 2.3×10−22). Subjects with ≥3 risk alleles of these variants had 6.5-fold higher risk of having low serum testosterone than subjects with no risk allele. The rs5934505 polymorphism near FAM9B on the X chromosome was also associated with testosterone concentrations (p = 5.6×10−16). The rs6258 polymorphism in exon 4 of SHBG affected SHBG's affinity for binding testosterone and the measured free testosterone fraction (p<0.01). Genetic variants in the SHBG locus and on the X chromosome are associated with a substantial variation in testosterone concentrations and increased risk of low testosterone. rs6258 is the first reported SHBG polymorphism, which affects testosterone binding to SHBG and the free testosterone fraction and could therefore influence the calculation of free testosterone using law-of-mass-action equation

    Five endometrial cancer risk loci identified through genome-wide association analysis.

    Get PDF
    We conducted a meta-analysis of three endometrial cancer genome-wide association studies (GWAS) and two follow-up phases totaling 7,737 endometrial cancer cases and 37,144 controls of European ancestry. Genome-wide imputation and meta-analysis identified five new risk loci of genome-wide significance at likely regulatory regions on chromosomes 13q22.1 (rs11841589, near KLF5), 6q22.31 (rs13328298, in LOC643623 and near HEY2 and NCOA7), 8q24.21 (rs4733613, telomeric to MYC), 15q15.1 (rs937213, in EIF2AK4, near BMF) and 14q32.33 (rs2498796, in AKT1, near SIVA1). We also found a second independent 8q24.21 signal (rs17232730). Functional studies of the 13q22.1 locus showed that rs9600103 (pairwise r(2) = 0.98 with rs11841589) is located in a region of active chromatin that interacts with the KLF5 promoter region. The rs9600103[T] allele that is protective in endometrial cancer suppressed gene expression in vitro, suggesting that regulation of the expression of KLF5, a gene linked to uterine development, is implicated in tumorigenesis. These findings provide enhanced insight into the genetic and biological basis of endometrial cancer.I.T. is supported by Cancer Research UK and the Oxford Comprehensive Biomedical Research Centre. T.H.T.C. is supported by the Rhodes Trust and the Nuffield Department of Medicine. Funding for iCOGS infrastructure came from the European Community's Seventh Framework Programme under grant agreement 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692 and C8197/A16565), the US National Institutes of Health (R01 CA128978, U19 CA148537, U19 CA148065 and U19 CA148112), the US Department of Defense (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, the Susan G. Komen Foundation for the Cure, the Breast Cancer Research Foundation and the Ovarian Cancer Research Fund. SEARCH recruitment was funded by a programme grant from Cancer Research UK (C490/A10124). Stage 1 and stage 2 case genotyping was supported by the NHMRC (552402 and 1031333). Control data were generated by the WTCCC, and a full list of the investigators who contributed to the generation of the data is available from the WTCCC website. We acknowledge use of DNA from the British 1958 Birth Cohort collection, funded by UK Medical Research Council grant G0000934 and Wellcome Trust grant 068545/Z/02; funding for this project was provided by the Wellcome Trust under award 085475. NSECG was supported by the European Union's Framework Programme 7 CHIBCHA grant and Wellcome Trust Centre for Human Genetics Core Grant 090532/Z/09Z, and CORGI was funded by Cancer Research UK. BCAC is funded by Cancer Research UK (C1287/A10118 and C1287/A12014). OCAC is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07) and the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.356
    corecore