146 research outputs found
Astrophysical structures from primordial quantum black holes
The characteristic sizes of astrophysical structures, up to the whole
observed Universe, can be recovered, in principle, assuming that gravity is the
overall interaction assembling systems starting from microscopic scales, whose
order of magnitude is ruled by the Planck length and the related Compton
wavelength. This result agrees with the absence of screening mechanisms for the
gravitational interaction and could be connected to the presence of Yukawa
corrections in the Newtonian potential which introduce typical interaction
lengths. This result directly comes out from quantization of primordial black
holes and then characteristic interaction lengths directly emerge from quantum
field theory.Comment: 11 page
Extreme events and predictability of catastrophic failure in composite materials and in the Earth
Despite all attempts to isolate and predict extreme earthquakes, these nearly always occur without obvious warning in real time: fully deterministic earthquake prediction is very much a ‘black swan’. On the other hand engineering-scale samples of rocks and other composite materials often show clear precursors to dynamic failure under controlled conditions in the laboratory, and successful evacuations have occurred before several volcanic eruptions. This may be because extreme earthquakes are not statistically special, being an emergent property of the process of dynamic rupture. Nevertheless, probabilistic forecasting of event rate above a given size, based on the tendency of earthquakes to cluster in space and time, can have significant skill compared to say random failure, even in real-time mode. We address several questions in this debate, using examples from the Earth (earthquakes, volcanoes) and the laboratory, including the following. How can we identify ‘characteristic’ events, i.e. beyond the power law, in model selection (do dragon-kings exist)? How do we discriminate quantitatively between stationary and non-stationary hazard models (is a dragon likely to come soon)? Does the system size (the size of the dragon’s domain) matter? Are there localising signals of imminent catastrophic failure we may not be able to access (is the dragon effectively invisible on approach)? We focus on the effect of sampling effects and statistical uncertainty in the identification of extreme events and their predictability, and highlight the strong influence of scaling in space and time as an outstanding issue to be addressed by quantitative studies, experimentation and models
Updated Nucleosynthesis Constraints on Unstable Relic Particles
We revisit the upper limits on the abundance of unstable massive relic
particles provided by the success of Big-Bang Nucleosynthesis calculations. We
use the cosmic microwave background data to constrain the baryon-to-photon
ratio, and incorporate an extensively updated compilation of cross sections
into a new calculation of the network of reactions induced by electromagnetic
showers that create and destroy the light elements deuterium, he3, he4, li6 and
li7. We derive analytic approximations that complement and check the full
numerical calculations. Considerations of the abundances of he4 and li6 exclude
exceptional regions of parameter space that would otherwise have been permitted
by deuterium alone. We illustrate our results by applying them to massive
gravitinos. If they weigh ~100 GeV, their primordial abundance should have been
below about 10^{-13} of the total entropy. This would imply an upper limit on
the reheating temperature of a few times 10^7 GeV, which could be a potential
difficulty for some models of inflation. We discuss possible ways of evading
this problem.Comment: 40 pages LaTeX, 18 eps figure
Monitoring biodiversity change through effective global coordination
The ability to monitor changes in biodiversity, and their societal impact, is critical to conserving species and managing ecosystems. While emerging technologies increase the breadth and reach of data acquisition, monitoring efforts are still spatially and temporally fragmented, and taxonomically biased. Appropriate long-term information remains therefore limited. The Group on Earth Observations Biodiversity Observation Network (GEO BON) aims to provide a general framework for biodiversity monitoring to support decision makers. Here, we discuss the coordinated observing system adopted by GEO BON, and review challenges and advances in its implementation, focusing on two interconnected core components — the Essential Biodiversity Variables as a standard framework for biodiversity monitoring, and the Biodiversity Observation Networks that support harmonized observation systems — while highlighting their societal relevance
Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture
The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained
The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe
- …