10 research outputs found

    Conflict Probe Concepts Analysis in Support of Free Flight

    Get PDF
    This study develops an operational concept and requirements for en route Free Flight using a simulation of the Cleveland Air Route Traffic Control Center, and develops requirements for an automated conflict probe for use in the Air Traffic Control (ATC) Centers. In this paper, we present the results of simulation studies and summarize implementation concepts and infrastructure requirements to transition from the current air traffic control system to mature Free Right. The transition path to Free Flight envisioned in this paper assumes an orderly development of communications, navigation, and surveillance (CNS) technologies based on results from our simulation studies. The main purpose of this study is to provide an overall context and methodology for evaluating airborne and ground-based requirements for cooperative development of the future ATC system

    Transition pathways for a UK low-carbon electricity system: comparing scenarios and technology implications

    Get PDF
    The United Kingdom (UK) has placed itself on a transition towards a low-carbon economy and society, through the imposition of a goal of reducing its ‘greenhouse’ gas emissions by 80% by 2050. A set of three low-carbon ‘Transition Pathways’ were developed to examine the influence of different governance arrangements on achieving a low-carbon future. They focus on the power sector, including the potential for increasing use of low-carbon electricity for heating and transport. These transition pathways were developed by starting from narrative storylines regarding different governance framings, drawing on interviews and workshops with stakeholders and analysis of historical analogies. Here the quantified pathways are compared and contrasted with the main scenarios developed in the UK Government’s 2011 Carbon Plan. This can aid an informed debate on the technical feasibility and social acceptability of realising transition pathways for decarbonising the UK energy sector by 2050. The contribution of these pathways to meeting Britain’s energy and carbon reduction goals are therefore evaluated on a ‘whole systems’ basis, including the implications of ‘upstream emissions’ arising from the ‘fuel supply chain’ ahead of power generators themselves

    Infrastructure transformation as a socio-technical process - Implications for the governance of energy distribution networks in the UK

    Get PDF
    This paper seeks to uncover and examine the complex set of governance challenges associated with transforming energy distribution networks, which play a key enabling role in a low carbon energy transition. We argue that, although the importance of such infrastructure networks to sustainability and low carbon transitions in the energy, water and mobility sectors is clear, there is relatively little understanding of the social and institutional dimension of these systems and appropriate governance strategies for their transformation. This may be because the prevalent model of infrastructure governance in the energy and other sectors has prioritised short term time horizons and static efficiencies. In this paper we draw on the social shaping of technology literature to develop a broader understanding of infrastructure change as a dynamic socio-technical process. The empirical focus of the paper is on the development of more flexible and sustainable energy distribution systems as key enablers for the UK's low carbon transition. Focusing on electricity and heat networks we identify a range of governance challenges along different phases of the 'infrastructure lifecycle', and we draw lessons for the development of governance frameworks for the transformation of energy infrastructure more generally

    Values in the Smart Grid: The co-evolving political economy of smart distribution

    Get PDF
    Investing in smart grid infrastructure is a key enabler for the transition to low carbon energy systems. Recent work has characterised the costs and benefits of individual "smart" investments. The political economy of the UK electricity system, however, has co-evolved such that there is a mismatch between where benefits accrue and where costs are incurred, leading to a problem of value capture and redeployment. Further, some benefits of smart grids are less easy to price directly and can be classified as public goods, such as energy security and decarbonisation. This paper builds on systemic treatments of energy system transitions to characterise the co-evolution of value capture and structural incentives in the electricity distribution system, drawing on semi-structured interviews and focus groups undertaken with smart grid stakeholders in the UK. This leads to an identification of municipal scale values that may be important for business models for the delivery of smart infrastructure. Municipalities may thus pursue specific economic opportunities through smart grid investment. This supports recent practical interest in an expanded role for municipalities as partners and investors in smart grid infrastructures

    Circular economy inspired imaginaries for sustainable innovations

    Get PDF
    In this chapter, Narayan and Tidström draw on the concept of imaginaries to show how Circular Economy (CE) can facilitate values that enable sustainable innovation. Innovation is key for sustainability, however, understanding and implementing sustainable innovation is challenging, and identifying the kind of actions that could direct sustainable innovations is important. The findings of this study indicate that CE-inspired imaginaries enable collaboration and by relating such imaginaries to common and shared social and cultural values, intermediaries could motivate actors into taking actions that contribute to sustainable innovation.fi=vertaisarvioitu|en=peerReviewed

    A low carbon industrial revolution? Insights and challenges from past technological and economic transformations

    Get PDF
    Recent efforts to promote a transition to a low carbon economy have been influenced by suggestions that a low carbon transition offers challenges and might yield economic benefits comparable to those of the previous industrial revolutions. This paper examines these arguments and the challenges facing a low carbon transition, by drawing on recent thinking on the technological, economic and institutional factors that enabled and sustained the first (British) industrial revolution, and the role of ‘general purpose technologies’ in stimulating and sustaining this and subsequent industrial transformation processes that have contributed to significant macroeconomic gains. These revolutions involved profound, long drawn-out changes in economy, technology and society; and although their energy transitions led to long-run economic benefits, they took many decades to develop. To reap significant long-run economic benefits from a low carbon transition sooner rather than later would require systemic efforts and incentives for low carbon innovation and substitution of high-carbon technologies. We conclude that while achieving a low carbon transition may require societal changes on a scale comparable with those of previous industrial revolutions, this transition does not yet resemble previous industrial revolutions. A successful low carbon transition would, however, amount to a different kind of industrial revolution

    Polarity-driven nonuniform composition in InGaAs nanowires

    No full text
    Manipulating the composition and morphology of semiconductor nanowires in a precisely controlled fashion is critical in developing nanowire devices. This is particularly true for ternary III-V nanowires. Many studies have shown the complexities within those nanowires. Here we report our findings of compositional irregularity in the shells of core-shell InGaAs nanowires with zinc-blende structure. Such an effect is caused by the crystal polarity within III-V zinc-blende lattice and the one-dimensional nature of nanowires that allows the formation of opposite polar surfaces simultaneously on the nanowire sidewalls. This polarity-driven effect in III-V nanowires may be utilized in manipulating the composition and morphology of III-V nanowires for device applications

    Research Portfolio Analysis in Science Policy: Moving from Financial Returns to Societal Benefits

    No full text
    corecore