10 research outputs found

    R47H TREM2 variant increases risk of typical early-onset Alzheimer's disease but not of prion or frontotemporal dementia.

    No full text
    BACKGROUND: Rare TREM2 variants are significant risk factors for Alzheimer's disease (AD). METHODS: We used next generation sequencing of the whole gene (n = 700), exon 2 Sanger sequencing (n = 2634), p.R47H genotyping (n = 3518), and genome wide association study imputation (n = 13,048) to determine whether TREM2 variants are risk factors or phenotypic modifiers in patients with AD (n = 1002), frontotemporal dementia (n = 358), sporadic (n = 2500), and variant (n = 115) Creutzfeldt-Jakob disease (CJD). RESULTS: We confirm only p.R47H as a risk factor for AD (odds ratio or OR = 2.19; 95% confidence interval or CI = 1.04-4.51; P = .03). p.R47H does not significantly alter risk for frontotemporal dementia (OR = 0.81), variant or sporadic CJD (OR = 1.06 95%CI = 0.66-1.69) in our cohorts. Individuals with p.R47H associated AD (n = 12) had significantly earlier symptom onset than individuals with no TREM2 variants (n = 551) (55.2 years vs. 61.7 years, P = .02). We note that heterozygous p.R47H AD is memory led and otherwise indistinguishable from "typical" sporadic AD. CONCLUSION: We find p.R47H is a risk factor for AD, but not frontotemporal dementia or prion disease

    Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer's pathology

    No full text
    There is considerable debate whether Alzheimer's disease (AD) originates in basal forebrain or entorhinal cortex. Here we examined whether longitudinal decreases in basal forebrain and entorhinal cortex grey matter volume were interdependent and sequential. In a large cohort of age-matched older adults ranging from cognitively normal to AD, we demonstrate that basal forebrain volume predicts longitudinal entorhinal degeneration. Models of parallel degeneration or entorhinal origin received negligible support. We then integrated volumetric measures with an amyloid biomarker sensitive to pre-symptomatic AD pathology. Comparison between cognitively matched normal adult subgroups, delineated according to the amyloid biomarker, revealed abnormal degeneration in basal forebrain, but not entorhinal cortex. Abnormal degeneration in both basal forebrain and entorhinal cortex was only observed among prodromal (mildly amnestic) individuals. We provide evidence that basal forebrain pathology precedes and predicts both entorhinal pathology and memory impairment, challenging the widely held belief that AD has a cortical origin

    Drug-related heatstroke

    No full text
    corecore