125 research outputs found

    On the Origin of the Galaxy Star-Formation-Rate Sequence: Evolution and Scatter

    Full text link
    We use a semi-analytic model for disk galaxies to explore the origin of the time evolution and small scatter of the galaxy SFR sequence -- the tight correlation between star-formation rate (SFR) and stellar mass (M_star). The steep decline of SFR from z~2 to the present, at fixed M_star, is a consequence of the following: First, disk galaxies are in a steady state with the SFR following the net (i.e., inflow minus outflow) gas accretion rate. The evolution of the SFR sequence is determined by evolution in the cosmological specific accretion rates, \propto (1+z)^{2.25}, but is found to be independent of feedback. Although feedback determines the outflow rates, it shifts galaxies along the SFR sequence, leaving its zero point invariant. Second, the conversion of accretion rate to SFR is materialized through gas density, not gas mass. Although the model SFR is an increasing function of both gas mass fraction and gas density, only the gas densities are predicted to evolve significantly with redshift. Third, star formation is fueled by molecular gas. Since the molecular gas fraction increases monotonically with increasing gas density, the model predicts strong evolution in the molecular gas fractions, increasing by an order of magnitude from z=0 to z~2. On the other hand, the model predicts that the effective surface density of atomic gas is ~10 M_sun pc^{-2}, independent of redshift, stellar mass or feedback. Our model suggests that the scatter in the SFR sequence reflects variations in the gas accretion history, and thus is insensitive to stellar mass, redshift or feedback. The large scatter in halo spin contributes negligibly, because it scatters galaxies along the SFR sequence. An observational consequence of this is that the scatter in the SFR sequence is independent of the size (both stellar and gaseous) of galaxy disks.Comment: 24 pages, 19 figures, accepted to MNRAS, minor changes to previous versio

    The Impact of Feedback on Disk Galaxy Scaling Relations

    Full text link
    We use a disk galaxy evolution model to investigate the impact of mass outflows (a.k.a. feedback) on disk galaxy scaling relations. Our model follows the accretion, cooling, star formation and ejection of baryonic mass inside growing dark matter haloes, with cosmologically motivated specific angular momentum distributions. Models without feedback produce disks that are too small and rotate too fast. Feedback reduces the baryonic masses of galaxies, resulting in larger disks with lower rotation velocities. Models with feedback can reproduce the zero points of the scaling relations between rotation velocity, stellar mass and disk size, but only in the absence of adiabatic contraction. Our feedback mechanism is maximally efficient in expelling mass, but our successful models require 25% of the SN energy, or 100% of the SN momentum, to drive the outflows. It remains to be seen whether such high efficiencies are realistic or not. Our energy and momentum driven wind models result in different slopes of various scaling relations, such as size - stellar mass, stellar mass - halo mass, and metallicity - stellar mass. Observations favor the energy driven wind at stellar masses below Mstar = 10^{10.5} Msun, but the momentum driven wind model at high masses. The ratio between the specific angular momentum of the baryons to that of the halo, (j_gal/m_gal), is not unity in our models. Yet this is the standard assumption in models of disk galaxy formation. Feedback preferentially ejects low angular momentum material because star formation is more efficient at smaller galactic radii. This results in (j_gal/m_gal) increasing with decreasing halo mass. This effect helps to resolve the discrepancy between the high spin parameters observed for dwarf galaxies with the low spin parameters predicted from LCDM. [Abridged]Comment: 27 pages, 16 figures, accepted to MNRAS, two new figure

    Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z=1.4

    Full text link
    Galactic winds are a prime suspect for the metal enrichment of the intergalactic medium and may have a strong influence on the chemical evolution of galaxies and the nature of QSO absorption line systems. We use a sample of 1406 galaxy spectra at z~1.4 from the DEEP2 redshift survey to show that blueshifted Mg II 2796, 2803 A absorption is ubiquitous in starforming galaxies at this epoch. This is the first detection of frequent outflowing galactic winds at z~1. The presence and depth of absorption are independent of AGN spectral signatures or galaxy morphology; major mergers are not a prerequisite for driving a galactic wind from massive galaxies. Outflows are found in coadded spectra of galaxies spanning a range of 30x in stellar mass and 10x in star formation rate (SFR), calibrated from K-band and from MIPS IR fluxes. The outflows have column densities of order N_H ~ 10^20 cm^-2 and characteristic velocities of ~ 300-500 km/sec, with absorption seen out to 1000 km/sec in the most massive, highest SFR galaxies. The velocities suggest that the outflowing gas can escape into the IGM and that massive galaxies can produce cosmologically and chemically significant outflows. Both the Mg II equivalent width and the outflow velocity are larger for galaxies of higher stellar mass and SFR, with V_wind ~ SFR^0.3, similar to the scaling in low redshift IR-luminous galaxies. The high frequency of outflows in the star-forming galaxy population at z~1 indicates that galactic winds occur in the progenitors of massive spirals as well as those of ellipticals. The increase of outflow velocity with mass and SFR constrains theoretical models of galaxy evolution that include feedback from galactic winds, and may favor momentum-driven models for the wind physics.Comment: Accepted by ApJ. 25 pages, 17 figures. Revised to add discussions of intervening absorbers and AGN-driven outflows; conclusions unchange

    Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands

    Get PDF
    Permafrost stores globally significant amounts of carbon (C) which may start to decompose and be released to the atmosphere in form of carbon dioxide (CO 2 ) and methane (CH 4 ) as global warming promotes extensive thaw. This permafrost carbon feedback to climate is currently considered to be the most important carbon-cycle feedback missing from climate models. Predicting the magnitude of the feedback requires a better understanding of how differences in environmental conditions post-thaw, particularly hydrological conditions, control the rate at which C is released to the atmosphere. In the sporadic and discontinuous permafrost regions of north-west Canada, we measured the rates and sources of C released from relatively undisturbed ecosystems, and compared these with forests experiencing thaw following wildfire (well-drained, oxic conditions) and collapsing peat plateau sites (water-logged, anoxic conditions). Using radiocarbon analyses, we detected substantial contributions of deep soil layers and/or previously-frozen sources in our well-drained sites. In contrast, no loss of previously-frozen C as CO 2 was detected on average from collapsed peat plateaus regardless of time since thaw and despite the much larger stores of available C that were exposed. Furthermore, greater rates of new peat formation resulted in these soils becoming stronger C sinks and this greater rate of uptake appeared to compensate for a large proportion of the increase in CH 4 emissions from the collapse wetlands. We conclude that in the ecosystems we studied, changes in soil moisture and oxygen availability may be even more important than previously predicted in determining the effect of permafrost thaw on ecosystem C balance and, thus, it is essential to monitor, and simulate accurately, regional changes in surface wetness

    Rules for Growth: Promoting Innovation and Growth Through Legal Reform

    Get PDF
    The United States economy is struggling to recover from its worst economic downturn since the Great Depression. After several huge doses of conventional macroeconomic stimulus - deficit-spending and monetary stimulus - policymakers are understandably eager to find innovative no-cost ways of sustaining growth both in the short and long runs. In response to this challenge, the Kauffman Foundation convened a number of America’s leading legal scholars and social scientists during the summer of 2010 to present and discuss their ideas for changing legal rules and policies to promote innovation and accelerate U.S. economic growth. This meeting led to the publication of Rules for Growth: Promoting Innovation and Growth Through Legal Reform, a comprehensive and groundbreaking volume of essays prescribing a new set of growth-promoting policies for policymakers, legal scholars, economists, and business men and women. Some of the top Rules include: • Reforming U.S. immigration laws so that more high-skilled immigrants can launch businesses in the United States. • Improving university technology licensing practices so university-generated innovation is more quickly and efficiently commercialized. • Moving away from taxes on income that penalize risk-taking, innovation, and employment while shifting toward a more consumption-based tax system that encourages saving that funds investment. In addition, the research tax credit should be redesigned and made permanent. • Overhauling local zoning rules to facilitate the formation of innovative companies. • Urging judges to take a more expansive view of flexible business contracts that are increasingly used by innovative firms. • Urging antitrust enforcers and courts to define markets more in global terms to reflect contemporary realities, resist antitrust enforcement from countries with less sound antitrust regimes, and prohibit industry trade protection and subsidies. • Reforming the intellectual property system to allow for a post-grant opposition process and address the large patent application backlog by allowing applicants to pay for more rapid patent reviews. • Authorizing corporate entities to form digitally and use software as a means for setting out agreements and bylaws governing corporate activities. The collective essays in the book propose a new way of thinking about the legal system that should be of interest to policymakers and academic scholars alike. Moreover, the ideas presented here, if embodied in law, would augment a sustained increase in U.S. economic growth, improving living standards for U.S. residents and for many in the rest of the world

    Interleukin‐1 Blockade Inhibits the Acute Inflammatory Response in Patients With ST‐Segment–Elevation Myocardial Infarction

    Get PDF
    Background ST‐segment–elevation myocardial infarction is associated with an intense acute inflammatory response and risk of heart failure. We tested whether interleukin‐1 blockade with anakinra significantly reduced the area under the curve for hsCRP (high sensitivity C‐reactive protein) levels during the first 14 days in patients with ST‐segment–elevation myocardial infarction (VCUART3 [Virginia Commonwealth University Anakinra Remodeling Trial 3]). Methods and Results We conducted a randomized, placebo‐controlled, double‐blind, clinical trial in 99 patients with ST‐segment–elevation myocardial infarction in which patients were assigned to 2 weeks treatment with anakinra once daily (N=33), anakinra twice daily (N=31), or placebo (N=35). hsCRP area under the curve was significantly lower in patients receiving anakinra versus placebo (median, 67 [interquartile range, 39–120] versus 214 [interquartile range, 131–394] mg·day/L; P\u3c0.001), without significant differences between the anakinra arms. No significant differences were found between anakinra and placebo groups in the interval changes in left ventricular end‐systolic volume (median, 1.4 [interquartile range, −9.8 to 9.8] versus −3.9 [interquartile range, −15.4 to 1.4] mL; P=0.21) or left ventricular ejection fraction (median, 3.9% [interquartile range, −1.6% to 10.2%] versus 2.7% [interquartile range, −1.8% to 9.3%]; P=0.61) at 12 months. The incidence of death or new‐onset heart failure or of death and hospitalization for heart failure was significantly lower with anakinra versus placebo (9.4% versus 25.7% [P=0.046] and 0% versus 11.4% [P=0.011], respectively), without difference between the anakinra arms. The incidence of serious infection was not different between anakinra and placebo groups (14% versus 14%; P=0.98). Injection site reactions occurred more frequently in patients receiving anakinra (22%) versus placebo (3%; P=0.016). Conclusions In patients presenting with ST‐segment–elevation myocardial infarction, interleukin‐1 blockade with anakinra significantly reduces the systemic inflammatory response compared with placebo. Clinical Trial Registration URL: https://www.clinicaltrials.gov/. Unique identifier: NCT01950299

    Working paper analysing the economic implications of the proposed 30% target for areal protection in the draft post-2020 Global Biodiversity Framewor

    Get PDF
    58 pages, 5 figures, 3 tables- The World Economic Forum now ranks biodiversity loss as a top-five risk to the global economy, and the draft post-2020 Global Biodiversity Framework proposes an expansion of conservation areas to 30% of the earth’s surface by 2030 (hereafter the “30% target”), using protected areas (PAs) and other effective area-based conservation measures (OECMs). - Two immediate concerns are how much a 30% target might cost and whether it will cause economic losses to the agriculture, forestry and fisheries sectors. - Conservation areas also generate economic benefits (e.g. revenue from nature tourism and ecosystem services), making PAs/Nature an economic sector in their own right. - If some economic sectors benefit but others experience a loss, high-level policy makers need to know the net impact on the wider economy, as well as on individual sectors. [...]A. Waldron, K. Nakamura, J. Sze, T. Vilela, A. Escobedo, P. Negret Torres, R. Button, K. Swinnerton, A. Toledo, P. Madgwick, N. Mukherjee were supported by National Geographic and the Resources Legacy Fund. V. Christensen was supported by NSERC Discovery Grant RGPIN-2019-04901. M. Coll and J. Steenbeek were supported by EU Horizon 2020 research and innovation programme under grant agreement No 817578 (TRIATLAS). D. Leclere was supported by TradeHub UKRI CGRF project. R. Heneghan was supported by Spanish Ministry of Science, Innovation and Universities, Acciones de Programacion Conjunta Internacional (PCIN-2017-115). M. di Marco was supported by MIUR Rita Levi Montalcini programme. A. Fernandez-Llamazares was supported by Academy of Finland (grant nr. 311176). S. Fujimori and T. Hawegawa were supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan and the Sumitomo Foundation. V. Heikinheimo was supported by Kone Foundation, Social Media for Conservation project. K. Scherrer was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 682602. U. Rashid Sumaila acknowledges the OceanCanada Partnership, which funded by the Social Sciences and Humanities Research Council of Canada (SSHRC). T. Toivonen was supported by Osk. Huttunen Foundation & Clare Hall college, Cambridge. W. Wu was supported by The Environment Research and Technology Development Fund (2-2002) of the Environmental Restoration and Conservation Agency of Japan. Z. Yuchen was supported by a Ministry of Education of Singapore Research Scholarship Block (RSB) Research FellowshipPeer reviewe
    corecore