135 research outputs found

    Measuring Enzymatic HIV-1 Susceptibility to Two Reverse Transcriptase Inhibitors as a Rapid and Simple Approach to HIV-1 Drug-Resistance Testing

    Get PDF
    Simple and cost-effective approaches for HIV drug-resistance testing are highly desirable for managing increasingly expanding HIV-1 infected populations who initiate antiretroviral therapy (ART), particularly in resource-limited settings. Non-nucleoside reverse trancriptase inhibitor (NNRTI)-based regimens with an NRTI backbone containing lamivudine (3TC) or emtricitabine (FTC) are preferred first ART regimens. Failure with these drug combinations typically involves the selection of NNRTI- and/or 3TC/FTC- resistant viruses. Therefore, the availability of simple assays to measure both types of drug resistance is critical. We have developed a high throughput screening test for assessing enzymatic resistance of the HIV-1 RT in plasma to 3TC/FTC and NNRTIs. The test uses the sensitive “Amp-RT” assay with a newly-developed real-time PCR format to screen biochemically for drug resistance in single reactions containing either 3TC-triphosphate (3TC-TP) or nevirapine (NVP). Assay cut-offs were defined based on testing a large panel of subtype B and non-subtype B clinical samples with known genotypic profiles. Enzymatic 3TC resistance correlated well with the presence of M184I/V, and reduced NVP susceptibility was strongly associated with the presence of K103N, Y181C/I, Y188L, and G190A/Q. The sensitivity and specificity for detecting resistance were 97.0% and 96.0% in samples with M184V, and 97.4% and 96.2% for samples with NNRTI mutations, respectively. We further demonstrate the utility of an HIV capture method in plasma by using magnetic beads coated with CD44 antibody that eliminates the need for ultracentifugation. Thus our results support the use of this simple approach for distinguishing WT from NNRTI- or 3TC/FTC-resistant viruses in clinical samples. This enzymatic testing is subtype-independent and can assist in the clinical management of diverse populations particularly in resource-limited settings

    T Cell Chemo-Vaccination Effects after Repeated Mucosal SHIV Exposures and Oral Pre-Exposure Prophylaxis

    Get PDF
    Pre-exposure prophylaxis (PrEP) with anti-viral drugs is currently in clinical trials for the prevention of HIV infection. Induction of adaptive immune responses to virus exposures during anti-viral drug administration, i.e., a “chemo-vaccination” effect, could contribute to PrEP efficacy. To study possible chemo-vaccination, we monitored humoral and cellular immune responses in nine rhesus macaques undergoing up to 14 weekly, low-dose SHIVSF162P3 rectal exposures. Six macaques concurrently received PrEP with intermittent, oral Truvada; three were no-PrEP controls. PrEP protected 4 macaques from infection. Two of the four showed evidence of chemo-vaccination, because they developed anti-SHIV CD4+ and CD8+ T cells; SHIV-specific antibodies were not detected. Control macaques showed no anti-SHIV immune responses before infection. Chemo-vaccination-induced T cell responses were robust (up to 3,940 SFU/106 PBMCs), predominantly central memory cells, short-lived (≤22 weeks), and appeared intermittently and with changing specificities. The two chemo-vaccinated macaques were virus-challenged again after 28 weeks of rest, after T cell responses had waned. One macaque was not protected from infection. The other macaque concurrently received additional PrEP. It remained uninfected and T cell responses were boosted during the additional virus exposures. In summary, we document and characterize PrEP-induced T cell chemo-vaccination. Although not protective after subsiding in one macaque, chemo-vaccination-induced T cells warrant more comprehensive analysis during peak responses for their ability to prevent or to control infections after additional exposures. Our findings highlight the importance of monitoring these responses in clinical PrEP trials and suggest that a combination of vaccines and PrEP potentially might enhance efficacy

    Ultra-long-acting removable drug delivery system for HIV treatment and prevention

    Get PDF
    Non-adherence to medication is an important health care problem, especially in the treatment of chronic conditions. Injectable long-acting (LA) formulations of antiretrovirals (ARVs) represent a viable alternative to improve adherence to HIV/AIDS treatment and prevention. However, the LA-ARV formulations currently in clinical trials cannot be removed after administration even if adverse events occur. Here we show an ultra-LA removable system that delivers drug for up to 9 months and can be safely removed to stop drug delivery. We use two pre-clinical models for HIV transmission and treatment, non-human primates (NHP) and humanized BLT (bone marrow/liver/thymus) mice and show a single dose of subcutaneously administered ultra-LA dolutegravir effectively delivers the drug in both models and show suppression of viremia and protection from multiple high-dose vaginal HIV challenges in BLT mice. This approach represents a potentially effective strategy for the ultra-LA drug delivery with multiple possible therapeutic applications

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Using geospatial modelling to optimize the rollout of antiretroviral-based pre-exposure HIV interventions in Sub-Saharan Africa.

    No full text
    Antiretroviral (ARV)-based pre-exposure HIV interventions may soon be rolled out in resource-constrained Sub-Saharan African countries, but rollout plans have yet to be designed. Here we use geospatial modelling and optimization techniques to compare two rollout plans for ARV-based microbicides in South Africa: a utilitarian plan that minimizes incidence by using geographic targeting, and an egalitarian plan that maximizes geographic equity in access to interventions. We find significant geographic variation in the efficiency of interventions in reducing HIV transmission, and that efficiency increases disproportionately with increasing incidence. The utilitarian plan would result in considerable geographic inequity in access to interventions, but (by exploiting geographic variation in incidence) could prevent ~40% more infections than the egalitarian plan. Our results show that the geographic resource allocation decisions made at the beginning of a rollout, and the location where the rollout is initiated, will be crucial in determining the success of interventions in reducing HIV epidemics
    corecore