46 research outputs found

    Radial Velocity and Metallicity of the Globular Cluster IC4499 Obtained with AAOmega

    Full text link
    We present radial velocity and metallicity measurements for the far-southern Galactic globular cluster IC4499. We selected several hundred target red giant stars in and around the cluster from the 2MASS point source catalog, and obtained spectra at the near-infrared calcium triplet using the AAOmega spectrograph. Observations of giants in globular clusters M4, M22, and M68 were taken to provide radial velocity and metallicity comparison objects. Based on velocity data we conclude that 43 of our targets are cluster members, by far the largest sample of IC4499 giants spectroscopically studied. We determine the mean heliocentric radial velocity of the cluster to be 31.5 plus or minus 0.4 km/s, and find the most likely central velocity dispersion to be 2.5 plus or minus 0.5 km/s. This leads to a dynamical mass estimate for the cluster of 93 plus or minus 37 thousand solar masses. We are sensitive to cluster rotation down to an amplitude of about 1 km/s, but no evidence for cluster rotation is seen. The cluster metallicity is found to be [Fe/H] = -1.52 plus or minus 0.12 on the Carretta-Gratton scale. The radial velocity of the cluster, previously highly uncertain, is consistent with membership in the Monoceros tidal stream, but also with a halo origin. The horizontal branch morphology of the cluster is slightly redder than average for its metallicity, but it is likely not unusually young compared to other clusters of the halo. The new constraints on the cluster kinematics and metallicity may give insight into its extremely high specific frequency of RR Lyrae stars.Comment: Accepted to MNRAS, 13 pages, 9 figure

    Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor

    Get PDF
    [EN] Copper is an essential element in plants. When scarce, copper is acquired from extracellular environment or remobilized from intracellular sites, through members of the high affinity copper transporters family COPT located at the plasma membrane and internal membrane, respectively. Here, we show that COPT3 is an intracellular copper transporter, located at a compartment of the secretory pathway, that is mainly expressed in pollen grains and vascular bundles. Contrary to the COPT1 plasma membrane member, the expression of the internal COPT3 membrane transporter was higher at 12 h than at 0 h of a neutral photoperiod day under copper deficiency. The screening of a library of conditionally overexpressed transcription factors implicated members of the TCP family in the COPT3 differential temporal expression pattern. Particularly, in vitro, TCP16 was found to bind to the COPT3 promoter and down-regulated its expression. Accordingly, TCP16 was mainly expressed at 0 h under copper deficiency and induced at 12 h by copper excess. Moreover, TCP16 overexpression resulted in increased sensitivity to copper deficiency, whereas the tcp16 mutant was sensitive to copper excess. Both copper content and the expression of particular copper status markers were altered in plants with modified levels of TCP16. Consistent with TCP16 affecting pollen development, the lack of COPT3 function led to altered pollen morphology. Furthermore, analysis of copt3 and COPT3 overexpressing plants revealed that COPT3 function exerted a negative effect on TCP16 expression. Taken together, these results suggest a differential daily regulation of copper uptake depending on the external and internal copper pools, in which TCP16 inhibits copper remobilization at dawn through repression of intracellular transporters.This work has been supported by grants BIO2017-87828-C2-1-P (LP) and the TRANSPLANTA Consortium (CSD2007-00057) from the Spanish Ministry of Economy and Competitiveness, and by FEDER funds from the European Union. NA-C and AC-S were recipients of a predoctoral FPI fellowship from the Spanish Ministry of Economy and Competitiveness.Andrés-Colás, N.; Carrió-Seguí, Á.; Abdel-Ghany, SE.; Pilon, M.; Peñarrubia, L. (2018). Expression of the Intracellular COPT3-Mediated Cu Transport Is Temporally Regulated by the TCP16 Transcription Factor. Frontiers in Plant Science. 9. https://doi.org/10.3389/fpls.2018.00910S9Abdel-Ghany, S. E., Müller-Moulé, P., Niyogi, K. K., Pilon, M., & Shikanai, T. (2005). Two P-Type ATPases Are Required for Copper Delivery in Arabidopsis thaliana Chloroplasts. The Plant Cell, 17(4), 1233-1251. doi:10.1105/tpc.104.030452Almeida, D. M., Gregorio, G. B., Oliveira, M. M., & Saibo, N. J. M. (2016). Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype. Plant Molecular Biology, 93(1-2), 61-77. doi:10.1007/s11103-016-0547-7à lvarez-Fernández, A., Díaz-Benito, P., Abadía, A., López-Millán, A.-F., & Abadía, J. (2014). Metal species involved in long distance metal transport in plants. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00105Andrés-Colás, N., Perea-García, A., Mayo de Andrés, S., Garcia-Molina, A., Dorcey, E., Rodríguez-Navarro, S., … Peñarrubia, L. (2013). Comparison of global responses to mild deficiency and excess copper levels in Arabidopsis seedlings. Metallomics, 5(9), 1234. doi:10.1039/c3mt00025gAndrés-Colás, N., Perea-García, A., Puig, S., & Peñarrubia, L. (2010). Deregulated Copper Transport Affects Arabidopsis Development Especially in the Absence of Environmental Cycles. Plant Physiology, 153(1), 170-184. doi:10.1104/pp.110.153676Andrés-Colás, N., Sancenón, V., Rodríguez-Navarro, S., Mayo, S., Thiele, D. J., Ecker, J. R., … Peñarrubia, L. (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. The Plant Journal, 45(2), 225-236. doi:10.1111/j.1365-313x.2005.02601.xAndriankaja, M. E., Danisman, S., Mignolet-Spruyt, L. F., Claeys, H., Kochanke, I., Vermeersch, M., … Inzé, D. (2014). Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. Plant Molecular Biology, 85(3), 233-245. doi:10.1007/s11103-014-0180-2Atamian, H. S., & Harmer, S. L. (2016). Circadian regulation of hormone signaling and plant physiology. Plant Molecular Biology, 91(6), 691-702. doi:10.1007/s11103-016-0477-4Balsemão-Pires, E., Andrade, L. R., & Sachetto-Martins, G. (2013). Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiology and Biochemistry, 67, 120-125. doi:10.1016/j.plaphy.2013.03.009Bar-Peled, M., & Raikhel, N. V. (1997). Characterization of AtSEC12 and AtSAR1 (Proteins Likely Involved in Endoplasmic Reticulum and Golgi Transport). Plant Physiology, 114(1), 315-324. doi:10.1104/pp.114.1.315Bate, N., & Twell, D. (1998). Plant Molecular Biology, 37(5), 859-869. doi:10.1023/a:1006095023050Bemer, M., van Dijk, A. D. J., Immink, R. G. H., & Angenent, G. C. (2017). Cross-Family Transcription Factor Interactions: An Additional Layer of Gene Regulation. Trends in Plant Science, 22(1), 66-80. doi:10.1016/j.tplants.2016.10.007Bernal, M., Casero, D., Singh, V., Wilson, G. T., Grande, A., Yang, H., … Krämer, U. (2012). Transcriptome Sequencing Identifies SPL7-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis. The Plant Cell, 24(2), 738-761. doi:10.1105/tpc.111.090431Blaby-Haas, C. E., & Merchant, S. S. (2014). Lysosome-related Organelles as Mediators of Metal Homeostasis. Journal of Biological Chemistry, 289(41), 28129-28136. doi:10.1074/jbc.r114.592618Bock, K. W., Honys, D., Ward, J. M., Padmanaban, S., Nawrocki, E. P., Hirschi, K. D., … Sze, H. (2006). Integrating Membrane Transport with Male Gametophyte Development and Function through Transcriptomics. Plant Physiology, 140(4), 1151-1168. doi:10.1104/pp.105.074708Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3Brancaccio, D., Gallo, A., Piccioli, M., Novellino, E., Ciofi-Baffoni, S., & Banci, L. (2017). [4Fe-4S] Cluster Assembly in Mitochondria and Its Impairment by Copper. Journal of the American Chemical Society, 139(2), 719-730. doi:10.1021/jacs.6b09567Bruinsma, J. (1961). A comment on the spectrophotometric determination of chlorophyll. Biochimica et Biophysica Acta, 52(3), 576-578. doi:10.1016/0006-3002(61)90418-8Carrió-Seguí, A., Garcia-Molina, A., Sanz, A., & Peñarrubia, L. (2014). Defective Copper Transport in the copt5 Mutant Affects Cadmium Tolerance. Plant and Cell Physiology, 56(3), 442-454. doi:10.1093/pcp/pcu180Chen, Y.-Y., Wang, Y., Shin, L.-J., Wu, J.-F., Shanmugam, V., Tsednee, M., … Yeh, K.-C. (2013). Iron Is Involved in the Maintenance of Circadian Period Length in Arabidopsis. Plant Physiology, 161(3), 1409-1420. doi:10.1104/pp.112.212068Coego, A., Brizuela, E., Castillejo, P., Ruíz, S., Koncz, C., … del Pozo, J. C. (2014). The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. The Plant Journal, 77(6), 944-953. doi:10.1111/tpj.12443Cubas, P., Lauter, N., Doebley, J., & Coen, E. (1999). The TCP domain: a motif found in proteins regulating plant growth and development. The Plant Journal, 18(2), 215-222. doi:10.1046/j.1365-313x.1999.00444.xDanisman, S. (2016). TCP Transcription Factors at the Interface between Environmental Challenges and the Plant’s Growth Responses. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01930Dhadi, S. R., Krom, N., & Ramakrishna, W. (2009). Genome-wide comparative analysis of putative bidirectional promoters from rice, Arabidopsis and Populus. Gene, 429(1-2), 65-73. doi:10.1016/j.gene.2008.09.034Dhaka, N., Bhardwaj, V., Sharma, M. K., & Sharma, R. (2017). Evolving Tale of TCPs: New Paradigms and Old Lacunae. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00479Franco-Zorrilla, J. M., López-Vidriero, I., Carrasco, J. L., Godoy, M., Vera, P., & Solano, R. (2014). DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences, 111(6), 2367-2372. doi:10.1073/pnas.1316278111Garcia-Molina, A., Andrés-Colás, N., Perea-García, A., del Valle-Tascón, S., Peñarrubia, L., & Puig, S. (2011). The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. The Plant Journal, 65(6), 848-860. doi:10.1111/j.1365-313x.2010.04472.xGarcia-Molina, A., Andrés-Colás, N., Perea-García, A., Neumann, U., Dodani, S. C., Huijser, P., … Puig, S. (2013). The Arabidopsis COPT6 Transport Protein Functions in Copper Distribution Under Copper-Deficient Conditions. Plant and Cell Physiology, 54(8), 1378-1390. doi:10.1093/pcp/pct088Garcia-Molina, A., Xing, S., & Huijser, P. (2014). Functional characterisation of Arabidopsis SPL7 conserved protein domains suggests novel regulatory mechanisms in the Cu deficiency response. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0231-5Giraud, E., Ng, S., Carrie, C., Duncan, O., Low, J., Lee, C. P., … Whelan, J. (2010). TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the Circadian Clock in Arabidopsis thaliana. The Plant Cell, 22(12), 3921-3934. doi:10.1105/tpc.110.074518Guan, P., Ripoll, J.-J., Wang, R., Vuong, L., Bailey-Steinitz, L. J., Ye, D., & Crawford, N. M. (2017). Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proceedings of the National Academy of Sciences, 114(9), 2419-2424. doi:10.1073/pnas.1615676114Guan, P., Wang, R., Nacry, P., Breton, G., Kay, S. A., Pruneda-Paz, J. L., … Crawford, N. M. (2014). Nitrate foraging byArabidopsisroots is mediated by the transcription factor TCP20 through the systemic signaling pathway. Proceedings of the National Academy of Sciences, 111(42), 15267-15272. doi:10.1073/pnas.1411375111Harmer, S. L., Hogenesch, J. B., Straume, M., Chang, H.-S., Han, B., Zhu, T., … Kay, S. A. (2000). Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian Clock. Science, 290(5499), 2110-2113. doi:10.1126/science.290.5499.2110Hermans, C., Vuylsteke, M., Coppens, F., Craciun, A., Inzé, D., & Verbruggen, N. (2010). Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytologist, 187(1), 119-131. doi:10.1111/j.1469-8137.2010.03258.xHirayama, T., Kieber, J. J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., … Ecker, J. R. (1999). RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson Disease–Related Copper Transporter, Is Required for Ethylene Signaling in Arabidopsis. Cell, 97(3), 383-393. doi:10.1016/s0092-8674(00)80747-3Hong, S., Kim, S. A., Guerinot, M. L., & McClung, C. R. (2012). Reciprocal Interaction of the Circadian Clock with the Iron Homeostasis Network in Arabidopsis. Plant Physiology, 161(2), 893-903. doi:10.1104/pp.112.208603Hong-Hermesdorf, A., Miethke, M., Gallaher, S. D., Kropat, J., Dodani, S. C., Chan, J., … Merchant, S. S. (2014). Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nature Chemical Biology, 10(12), 1034-1042. doi:10.1038/nchembio.1662Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901-3907. doi:10.1002/j.1460-2075.1987.tb02730.xKushnir, S. (1995). Molecular Characterization of a Putative Arabidopsis thaliana Copper Transporter and Its Yeast Homologue. Journal of Biological Chemistry, 270(47), 28479-28486. doi:10.1074/jbc.270.47.28479Kieffer, M., Master, V., Waites, R., & Davies, B. (2011). TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. The Plant Journal, 68(1), 147-158. doi:10.1111/j.1365-313x.2011.04674.xKim, H., Wu, X., & Lee, J. (2013). SLC31 (CTR) family of copper transporters in health and disease. Molecular Aspects of Medicine, 34(2-3), 561-570. doi:10.1016/j.mam.2012.07.011Klaumann, S., Nickolaus, S. D., Fürst, S. H., Starck, S., Schneider, S., Ekkehard Neuhaus, H., & Trentmann, O. (2011). The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytologist, 192(2), 393-404. doi:10.1111/j.1469-8137.2011.03798.xKosugi, S., & Ohashi, Y. (2002). DNA binding and dimerization specificity and potential targets for the TCP protein family. The Plant Journal, 30(3), 337-348. doi:10.1046/j.1365-313x.2002.01294.xKrom, N., & Ramakrishna, W. (2008). Comparative Analysis of Divergent and Convergent Gene Pairs and Their Expression Patterns in Rice, Arabidopsis, and Populus. Plant Physiology, 147(4), 1763-1773. doi:10.1104/pp.108.122416Li, S. (2015). The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. Plant Signaling & Behavior, 10(7), e1044192. doi:10.1080/15592324.2015.1044192Martín-Trillo, M., & Cubas, P. (2010). TCP genes: a family snapshot ten years later. Trends in Plant Science, 15(1), 31-39. doi:10.1016/j.tplants.2009.11.003Mitra, A., Han, J., Zhang, Z. J., & Mitra, A. (2009). The intergenic region of Arabidopsis thaliana cab1 and cab2 divergent genes functions as a bidirectional promoter. Planta, 229(5), 1015-1022. doi:10.1007/s00425-008-0859-1Mockler, T. C., Michael, T. P., Priest, H. D., Shen, R., Sullivan, C. M., Givan, S. A., … Chory, J. (2007). The Diurnal Project: Diurnal and Circadian Expression Profiling, Model-based Pattern Matching, and Promoter Analysis. Cold Spring Harbor Symposia on Quantitative Biology, 72(1), 353-363. doi:10.1101/sqb.2007.72.006Mukhopadhyay, P., & Tyagi, A. K. (2015). OsTCP19 influences developmental and abiotic stress signaling by modulatingABI4-mediated pathways. Scientific Reports, 5(1). doi:10.1038/srep09998Nicolas, M., & Cubas, P. (2016). TCP factors: new kids on the signaling block. Current Opinion in Plant Biology, 33, 33-41. doi:10.1016/j.pbi.2016.05.006Nohales, M. A., & Kay, S. A. (2016). Molecular mechanisms at the core of the plant circadian oscillator. Nature Structural & Molecular Biology, 23(12), 1061-1069. doi:10.1038/nsmb.3327Palatnik, J. F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J. C., & Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature, 425(6955), 257-263. doi:10.1038/nature01958Peñarrubia, L., Andrés-Colás, N., Moreno, J., & Puig, S. (2009). Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? JBIC Journal of Biological Inorganic Chemistry, 15(1), 29-36. doi:10.1007/s00775-009-0591-8Peñarrubia, L., Romero, P., Carrió-Seguí, A., Andrés-Bordería, A., Moreno, J., & Sanz, A. (2015). Temporal aspects of copper homeostasis and its crosstalk with hormones. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00255Perea-García, A., Andrés-Bordería, A., Mayo de Andrés, S., Sanz, A., Davis, A. M., Davis, S. J., … Peñarrubia, L. (2015). Modulation of copper deficiency responses by diurnal and circadian rhythms inArabidopsis thaliana. Journal of Experimental Botany, 67(1), 391-403. doi:10.1093/jxb/erv474Perea-García, A., Garcia-Molina, A., Andrés-Colás, N., Vera-Sirera, F., Pérez-Amador, M. A., Puig, S., & Peñarrubia, L. (2013). Arabidopsis Copper Transport Protein COPT2 Participates in the Cross Talk between Iron Deficiency Responses and Low-Phosphate Signaling. Plant Physiology, 162(1), 180-194. doi:10.1104/pp.112.212407Perea-García, A., Sanz, A., Moreno, J., Andrés-Bordería, A., de Andrés, S. M., Davis, A. M., … Peñarrubia, L. (2016). Daily rhythmicity of high affinity copper transport. Plant Signaling & Behavior, 11(3), e1140291. doi:10.1080/15592324.2016.1140291Pilon-Smits, E. A. H. (2002). Characterization of a NifS-Like Chloroplast Protein from Arabidopsis. Implications for Its Role in Sulfur and Selenium Metabolism. PLANT PHYSIOLOGY, 130(3), 1309-1318. doi:10.1104/pp.102.010280Pruneda-Paz, J. L., Breton, G., Para, A., & Kay, S. A. (2009). A Functional Genomics Approach Reveals CHE as a Component of the Arabidopsis Circadian Clock. Science, 323(5920), 1481-1485. doi:10.1126/science.1167206Puig, S. (2014). Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins. Advances in Botany, 2014, 1-9. doi:10.1155/2014/476917Rae, T. D. (1999). Undetectable Intracellular Free Copper: The Requirement of a Copper Chaperone for Superoxide Dismutase. Science, 284(5415), 805-808. doi:10.1126/science.284.5415.805Ravet, K., & Pilon, M. (2013). Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress. Antioxidants & Redox Signaling, 19(9), 919-932. doi:10.1089/ars.2012.5084Rawat, R., Xu, Z.-F., Yao, K.-M., & Chye, M.-L. (2005). Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase. Plant Molecular Biology, 57(5), 629-643. doi:10.1007/s11103-005-0954-7RODRIGO-MORENO, A., ANDRÉS-COLÁS, N., POSCHENRIEDER, C., GUNSÉ, B., PEÑARRUBIA, L., & SHABALA, S. (2012). Calcium- and potassium-permeable plasma membrane transporters are activated by copper inArabidopsisroot tips: linking copper transport with cytosolic hydroxyl radical production. Plant, Cell & Environment, 36(4), 844-855. doi:10.1111/pce.12020Rogers, H. J., Bate, N., Combe, J., Sullivan, J., Sweetman, J., Swan, C., … Twell, D. (2001). Plant Molecular Biology, 45(5), 577-585. doi:10.1023/a:1010695226241Rubio-Somoza, I., Zhou, C.-M., Confraria, A., Martinho, C., von Born, P., Baena-Gonzalez, E., … Weigel, D. (2014). Temporal Control of Leaf Complexity by miRNA-Regulated Licensing of Protein Complexes. Current Biology, 24(22), 2714-2719. doi:10.1016/j.cub.2014.09.058Salomé, P. A., Oliva, M., Weigel, D., & Krämer, U. (2012). Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function. The EMBO Journal, 32(4), 511-523. doi:10.1038/emboj.2012.330Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D. J., & Peñarrubia, L. (2004). TheArabidopsisCopper Transporter COPT1 Functions in Root Elongation and Pollen Development. Journal of Biological Chemistry, 279(15), 15348-15355. doi:10.1074/jbc.m313321200Sancenón, V., Puig, S., Mira, H., Thiele, D. J., & Peñarrubia, L. (2003). Plant Molecular Biology, 51(4), 577-587. doi:10.1023/a:1022345507112Seila, A. C., Calabrese, J. M., Levine, S. S., Yeo, G. W., Rahl, P. B., Flynn, R. A., … Sharp, P. A. (2008). Divergent Transcription from Active Promoters. Science, 322(5909), 1849-1851. doi:10.1126/science.1162253Takeda, T., Amano, K., Ohto, M., Nakamura, K., Sato, S., Kato, T., … Ueguchi, C. (2006). RNA Interference of the Arabidopsis Putative Transcription Factor TCP16 Gene Results in Abortion of Early Pollen Development. Plant Molecular Biology, 61(1-2), 165-177. doi:10.1007/s11103-006-6265-9Terzaghi, W. B., & Cashmore, A. R. (1995). Photomorphenesis: Seeing the light in plant development. Current Biology, 5(5), 466-468. doi:10.1016/s0960-9822(95)00092-3Uberti-Manassero, N. G., Coscueta, E. R., & Gonzalez, D. H. (2016). Expression of a repressor form of the Arabidopsis thaliana transcription factor TCP16 induces the formation of ectopic meristems. Plant Physiology and Biochemistry, 108, 57-62. doi:10.1016/j.plaphy.2016.06.031Viola, I. L., Camoirano, A., & Gonzalez, D. H. (2015). Redox-Dependent Modulation of Anthocyanin Biosynthesis by the TCP Transcription Factor TCP15 during Exposure to High Light Intensity Conditions in Arabidopsis. Plant Physiology, 170(1), 74-85. doi:10.1104/pp.15.01016Viola, I. L., Guttlein, L. N., & Gonzalez, D. H. (2013). Redox Modulation of Plant Developmental Regulators from the Class I TCP Transcription Factor Family. PLANT PHYSIOLOGY, 162(3), 1434-1447. doi:10.1104/pp.113.216416Viola, I. L., Reinheimer, R., Ripoll, R., Manassero, N. G. U., & Gonzalez, D. H. (2011). Determinants of the DNA Binding Specificity of Class I and Class II TCP Transcription Factors. Journal of Biological Chemistry, 287(1), 347-356. doi:10.1074/jbc.m111.256271Wakano, C., Byun, J. S., Di, L.-J., & Gardner, K. (2012). The dual lives of bidirectional promoters. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1819(7), 688-693. doi:10.1016/j.bbagrm.2012.02.006Wang, H., Mao, Y., Yang, J., & He, Y. (2015). TCP24 modulates secondary cell wall thickening and anther endothecium development. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00436Wang, H.-Y., Klatte, M., Jakoby, M., Bäumlein, H., Weisshaar, B., & Bauer, P. (2007). Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta, 226(4), 897-908. doi:10.1007/s00425-007-0535-xWang, S., Sun, X., Hoshino, Y., Yu, Y., Jia, B., Sun, Z., … Zhu, Y. (2014). MicroRNA319 Positively Regulates Cold Tolerance by Targeting OsPCF6 and OsTCP21 in Rice (Oryza sativa L.). PLoS ONE, 9(3), e91357. doi:10.1371/journal.pone.0091357Weiss, D., & Ori, N. (2007). Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiology, 144(3), 1240-1246. doi:10.1104/pp.107.100370Welchen, E., & Gonzalez, D. H. (2006). Overrepresentation of Elements Recognized by TCP-Domain Transcription Factors in the Upstream Regions of Nuclear Genes Encoding Components of the Mitochondrial Oxidative Phosphorylation Machinery. Plant Physiology, 141(2), 540-545. doi:10.1104/pp.105.075366Wu,

    Comparison of global responses to mild deficiency and excess copper levels in Arabidopsis seedlings

    Full text link
    [EN] Copper is an essential micronutrient in higher plants, but it is toxic in excess. The fine adjustments required to fit copper nutritional demands for optimal growth are illustrated by the diverse, severe symptoms resulting from copper deficiency and excess. Here, a differential transcriptomic analysis was done between Arabidopsis thaliana plants suffering from mild copper deficiency and those with a slight copper excess. The effects on the genes encoding cuproproteins or copper homeostasis factors were included in a CuAt database, which was organised to collect additional information and connections to other databases. The categories overrepresented under copper deficiency and copper excess conditions are discussed. Different members of the categories overrepresented under copper deficiency conditions were both dependent and independent of the general copper deficiency transcriptional regulator SPL7. The putative regulatory elements in the promoter of the copper deficiency overrepresented genes, particularly of the iron superoxide dismutase gene FSD1, were also analysed. A 65 base pair promoter fragment, with at least three GTAC sequences, was found to be not only characteristic of them all, but was responsible for most of the FSD1 copper-dependent regulations. Moreover, a new molecular marker for the slight excess copper nutritional status is proposed. Taken together, these data further contribute to characterise copper nutritional responses in higher plants.We thank Dr Toshiharu Shikanai for the spl7 mutant and the Unitat d'Analisi Elemental, Serveis Cientificotecnics at the Universitat de Barcelona. This work has been supported by Grants BIO2011-24848 and CSD2007-00057 to L.P. from the Spanish Ministry of Economy and Competitiveness, and by FEDER funds from the European Union and the Generalitat Valenciana (Regional Valencian Government; ACOMP07-159). N.A.-C., A.G.-M. and A.P.-G were recipients of predoctoral fellowships from the Spanish Ministry of Economy and Competitiveness.Andres-Colas, N.; Perea García, A.; Mayo, S.; Garcia-Molina, A.; Dorcey, E.; Rodríguez-Navarro, S.; Perez Amador, MA.... (2013). Comparison of global responses to mild deficiency and excess copper levels in Arabidopsis seedlings. Metallomics. 5(9):1234-1246. https://doi.org/10.1039/c3mt00025g123412465

    Chemotherapy or allogeneic transplantation in high-risk Philadelphia chromosome–negative adult lymphoblastic leukemia

    Get PDF
    The need for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in adults with Philadelphia chromosome–negative (Ph−) acute lymphoblastic leukemia (ALL) with high-risk (HR) features and adequate measurable residual disease (MRD) clearance remains unclear. The aim of the ALL-HR-11 trial was to evaluate the outcomes of HR Ph− adult ALL patients following chemotherapy or allo-HSCT administered based on end-induction and consolidation MRD levels. Patients aged 15 to 60 years with HR-ALL in complete response (CR) and MRD levels (centrally assessed by 8-color flow cytometry) <0.1% after induction and <0.01% after early consolidation were assigned to receive delayed consolidation and maintenance therapy up to 2 years in CR. The remaining patients were allocated to allo-HSCT. CR was attained in 315/348 patients (91%), with MRD <0.1% after induction in 220/289 patients (76%). By intention-to-treat, 218 patients were assigned to chemotherapy and 106 to allo-HSCT. The 5-year (±95% confidence interval) cumulative incidence of relapse (CIR), overall survival (OS), and event-free survival probabilities for the whole series were 43% ± 7%, 49% ± 7%, and 40% ± 6%, respectively, with CIR and OS rates of 45% ± 8% and 59% ± 9% for patients assigned to chemotherapy and of 40% ± 12% and 38% ± 11% for those assigned to allo-HSCT, respectively. Our results show that avoiding allo-HSCT does not hamper the outcomes of HR Ph− adult ALL patients up to 60 years with adequate MRD response after induction and consolidation. Better postremission alternative therapies are especially needed for patients with poor MRD clearance

    Evolutionary history of copy-number-variable locus for the low-affinity Fcy receptor: mutation rate, autoimmune disease, and the legacy of helminth infection

    Get PDF
    Both sequence variation and copy-number variation (CNV) of the genes encoding receptors for immunoglobulin G (Fcg receptors) have been genetically and functionally associated with a number of autoimmune diseases. However, the molecular nature and evolutionary context of this variation is unknown. Here, we describe the structure of the CNV, estimate its mutation rate and diversity, and place it in the context of the known functional alloantigen variation of these genes. Deletion of Fcg receptor IIIB, associated with systemic lupus erythematosus, is a result of independent nonallelic homologous recombination events with a frequency of approximately 0.1%. We also show that pathogen diversity, in particular helminth diversity, has played a critical role in shaping the functional variation at these genes both between mammalian species and between human populations. Positively selected amino acids are involved in the interaction with IgG and include some amino acids that are known polymorphic alloantigens in humans. This supports a genetic contribution to the hygiene hypothesis, which states that past evolution in the context of helminth diversity has left humans with an array of susceptibility alleles for autoimmune disease in the context of a helminth-free environment. This approach shows the link between pathogens and autoimmune disease at the genetic level and provides a strategy for interrogating the genetic variation underlying autoimmunedisease risk and infectious-disease susceptibility

    Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.)

    No full text
    Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1OE) in rice causes root shortening in high copper conditions and under iron deficiency. C1OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts

    NGC765-a disturbed HI giant

    Get PDF
    The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyWe present H I spectral line and radio-continuum Very Large Array (VLA) data of the galaxy NGC 765, complemented by optical and Chandra X-ray maps. NGC 765 has the largest H I-to-optical ratio known to date of any spiral galaxy and one of the largest known H I discs in absolute size with a diameter of 240 kpc measured at a surface density of 2 × 1019* atom cm−2. We derive a total H i mass of , a dynamical mass of Mdyn∼ 5.1 × 1011 M⊙ and an H i mass-to-luminosity ratio of MH I/LB= 1.6, making it the nearest and largest ‘crouching giant’. Optical images reveal evidence of a central bar with tightly wound low surface brightness spiral arms extending from it. Radio-continuum (L1.4 GHz= 1.3 × 1021 W Hz−1) and X-ray (LX≈ 1.7 × 1040 erg s−1) emission is found to coincide with the optical core of the galaxy, compatible with nuclear activity powered by a low-luminosity active galactic nucleus. We may be dealing with a galaxy that has retained in its current morphology traces of its formation history. In fact, it may still be undergoing some accretion, as evidenced by the presence of H i clumps the size (<10 kpc) and mass (108–109 M⊙) of small (dIrr) galaxies in the outskirts of its H i disc and by the presence of two similarly sized companions. *[see original online abstract for correct notation]Peer reviewe
    corecore