26 research outputs found

    Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis

    Get PDF
    Increasing demands for food and energy require a step change in the effectiveness, speed and flexibility of crop breeding. Therefore, the aim of this study was to assess the potential of genome-wide association studies (GWASs) and genomic selection (i.e. phenotype prediction from a genome-wide set of markers) to guide fundamental plant science and to accelerate breeding in the energy grass Miscanthus. We generated over 100 000 single-nucleotide variants (SNVs) by sequencing restriction site-associated DNA (RAD) tags in 138 Micanthus sinensis genotypes, and related SNVs to phenotypic data for 17 traits measured in a field trial. Confounding by population structure and relatedness was severe in naïve GWAS analyses, but mixed-linear models robustly controlled for these effects and allowed us to detect multiple associations that reached genome-wide significance. Genome-wide prediction accuracies tended to be moderate to high (average of 0.57), but varied dramatically across traits. As expected, predictive abilities increased linearly with the size of the mapping population, but reached a plateau when the number of markers used for prediction exceeded 10 000–20 000, and tended to decline, but remain significant, when cross-validations were performed across subpopulations. Our results suggest that the immediate implementation of genomic selection in Miscanthus breeding programs may be feasible

    Genetic relationships between spring emergence, canopy phenology and biomass yield increase the accuracy of genomic prediction in Miscanthus

    Get PDF
    Miscanthus has potential as a bioenergy crop but the rapid development of high-yielding varieties is challenging. Previous studies have suggested that phenology and canopy height are important determinants of biomass yield. Furthermore, while genome-wide prediction was effective for a broad range of traits, the predictive ability for yield was very low. We therefore developed models clarifying the genetic associations between spring emergence, consequent canopy phenology and dry biomass yield. The timing of emergence was a moderately strong predictor of early-season elongation growth (genetic correlation >0.5), but less so for growth later in the season and for the final yield (genetic correlation <0.1). In contrast, early-season canopy height was consistently more informative than emergence for predicting biomass yield across datasets for two species in Miscanthus and two growing seasons. We used the associations uncovered through these models to develop selection indices that are expected to increase the response to selection for yield by as much as 21% and improve the performance of genome-wide prediction by an order of magnitude. This multivariate approach could have an immediate impact in operational breeding programmes, as well as enable the integration of crop growth models and genome-wide predictionpublishersversionPeer reviewe

    Population structure and history of the Welsh sheep breeds determined by whole genome genotyping

    Get PDF
    BACKGROUND: One of the most economically important areas within the Welsh agricultural sector is sheep farming, contributing around ÂŁ230 million to the UK economy annually. Phenotypic selection over several centuries has generated a number of native sheep breeds, which are presumably adapted to the diverse and challenging landscape of Wales. Little is known about the history, genetic diversity and relationships of these breeds with other European breeds. We genotyped 353 individuals from 18 native Welsh sheep breeds using the Illumina OvineSNP50 array and characterised the genetic structure of these breeds. Our genotyping data were then combined with, and compared to, those from a set of 74 worldwide breeds, previously collected during the International Sheep Genome Consortium HapMap project. RESULTS: Model based clustering of the Welsh and European breeds indicated shared ancestry. This finding was supported by multidimensional scaling analysis (MDS), which revealed separation of the European, African and Asian breeds. As expected, the commercial Texel and Merino breeds appeared to have extensive co-ancestry with most European breeds. Consistently high levels of haplotype sharing were observed between native Welsh and other European breeds. The Welsh breeds did not, however, form a genetically homogeneous group, with pairwise F(ST) between breeds averaging 0.107 and ranging between 0.020 and 0.201. Four subpopulations were identified within the 18 native breeds, with high homogeneity observed amongst the majority of mountain breeds. Recent effective population sizes estimated from linkage disequilibrium ranged from 88 to 825. CONCLUSIONS: Welsh breeds are highly diverse with low to moderate effective population sizes and form at least four distinct genetic groups. Our data suggest common ancestry between the native Welsh and European breeds. These findings provide the basis for future genome-wide association studies and a first step towards developing genomics assisted breeding strategies in the UK. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12863-015-0216-x) contains supplementary material, which is available to authorized users

    Comparative genomics reveals insights into avian genome evolution and adaptation

    Get PDF
    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits
    corecore