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Abstract
Flowering in perennial species is directed via complex signalling pathways that 
 adjust to developmental regulations and environmental cues. Synchronized flowering 
in  certain environments is a prerequisite to commercial seed production, and so the 
elucidation of the genetic architecture of flowering time in Miscanthus and switchgrass 
could aid breeding in these underdeveloped species. In this context, we assessed a 
mapping population in Miscanthus and two ecologically diverse switchgrass mapping 
populations over 3 years from planting. Multiple flowering time quantitative trait loci 
(QTL) were identified in both species. Remarkably, the most significant Miscanthus 
and switchgrass QTL proved to be syntenic, located on linkage groups 4 and 2, with 
logarithm of odds scores of 17.05 and 21.8 respectively. These QTL regions contained 
three flowering time transcription factors: Squamosa Promoter-binding protein-Like, 
MADS-box SEPELLATA2 and gibberellin-responsive bHLH137. The former is 
emerging as a key component of the age-related flowering time pathway.
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1 |  INTRODUCTION

C4 biomass grasses such as sugarcane (Saccharum officinarum), 
sorghum (Sorghum bicolor), Miscanthus (Miscanthus spp.) and 
switchgrass (Panicum virgatum) are some of the most photo-
synthetically efficient species in the plant kingdom. Feedstock 
from these crops are suitable for conversion into energy and 
bio-products, a promising approach to curbing greenhouse gas 
(GHG) emissions and providing sustainable alternatives to pet-
rochemical products (Clark et  al., 2009; Hastings et  al., 2008; 
McCalmont et al., 2017; Robson et al., 2019).

Miscanthus and switchgrass are widely cultivated peren-
nial bioenergy crops in Europe and the United States, respec-
tively, and capable of producing moderate to high biomass 
yields with low inputs, even on marginal or contaminated 
land (Clifton-Brown et  al.,  2001; Hope & McElroy,  1990; 
McLaughlin et  al.,  1999; Moser & Vogel.,  1995; Purdy 
et al., 2013; Rusinowski et al., 2019).

Miscanthus demonstrates stand and harvest longev-
ity exceeding 15  years (Clifton-Brown et  al.,  2019) and, 
once established, expresses considerable drought (Scordia 
et  al.,  2020) and flood (Kam et  al.,  2020) tolerance with 
low to zero requirements for herbicide treatments and fer-
tilization (Cosentino et  al.,  2007). The commercially dom-
inant triploid Miscanthus  x  giganteus (Mxg) is a natural 
interspecific hybrid between diploid Miscanthus sinensis 
(2n = 2x = 38) and allotetraploid Miscanthus sacchariflorus 
(2n = 4x = 76; Greef & Deuter, 1993; Linde-Laursen, 1993; 
Rayburn et al., 2009). The triploid nature of Mxg means that 
propagation is vegetative. The monoclonal nature of this crop 
therefore poses risks for disease outbreaks or yield losses due 
to abiotic stresses (Lewandowski et al., 2016). It is therefore 
essential that we broaden the genetic base of commercially 
deployed Miscanthus to address vulnerabilities and improve 
yield quality and quantity. Furthermore, recent Net Zero pol-
icies (Committee on Climate Change, 2020) recommend the 
scaling up of planting rates of energy crops like Miscanthus 
to deliver CO2-equivalent emissions savings. Both of these 
objectives can be achieved through the development of seed-
based hybrid varieties (Clifton-Brown et  al.,  2017, 2019) 
using diverse Miscanthus genotypes.

Switchgrass comprises two major ecotypes believed 
to have diverged approximately 0.8–1.0  Mya (Morris 
et al., 2011; Young et al., 2011; Zhang et al., 2011), which 
are adapted to either upland or lowland environments. 
Differences in ecotype morphology and habitat preferences 
are believed to result from the combined effects of broad spe-
cies adaptation and microevolutionary processes. The upland 
ecotype (predominantly octoploid 2n = 8x = 72, with some 
tetraploid) is typical of the mid to Northern United States. 
It has short fine stems and matures early. The vigorous low-
land ecotype (tetraploid 2n = 4x = 36) largely grows in the 
warmer and moist southern United States and has thick and 

tall stems, which mature later than the upland ecotype (Vogel 
et al., 1985).

The extensive phenotypic and genotypic diversity among 
Miscanthus and switchgrass genera provides broad adapt-
ability to a wide range of soil and climatic conditions. This 
same variety also provides diverse germplasm for genetic 
studies of adaptive and agronomically important traits, in-
cluding flowering time (Bouton, 2007; Casler, 2012; Clark 
et al., 2016, 2019; Jensen et al., 2013; Robson et al., 2013; 
Slavov et  al.,  2014)—a key trait for yield intensification 
(Casler, 2019; Jensen et al., 2011, 2013; Taylor et al., 2018). 
However, flowering time is a complex trait and the broad 
phenotypic variation exhibited in Miscanthus and switch-
grass (Jensen et  al.,  2011; Schwartz & Amasino,  2013) is 
probably underpinned by multiple genes.

Flowering time genetic control differs between annuals and 
perennials (Amasino, 2009; Friedman & Rubin, 2015; Khan 
et al., 2014; Kiefer et al., 2017; Nuñez & Yamada, 2017). The 
annual plant model Arabidopsis operates five known flower-
ing pathways that respond to a range of developmental regu-
lators and seasonal cues (Andres & Coupland, 2012; Bratzel 
& Turck, 2015; Hyun et al., 2017; Wils & Kaufmann, 2017). 
The exogenous (seasonal) cues regulate pathways associ-
ated with photoperiod and vernalization, while endogenous 
signals regulate the gibberellin, autonomous and ageing 
pathways. The latter prevents flowering during the juve-
nile phase but can also trigger the transition to flowering if 
other inducing conditions fail (Teotia & Tang, 2015; Wang 
et  al.,  2009). All these pathways integrate flowering time 
by converging on a common set of downstream genes, such 
as FLOWERING LOCUS C, FLOWERING LOCUS T and 
the transcription factor LEAFY. In perennial grasses like 
Miscanthus and switchgrass, the understanding of flowering 
time control is in its infancy; genetic analyses are relatively 
recent and model systems are less well developed compared 
to Arabidopsis.

However, a number of genetic maps have now been con-
structed in Miscanthus (Atienza et al., 2002; Kim et al., 2012; 
Liu et  al.,  2016; Ma et  al.,  2012) and switchgrass (Liu 
et al., 2012; Okada et al., 2010; Serba et al., 2013) permit-
ting the alignment of their linkage groups (LGs) to other spe-
cies, and enabling the development of breeding tools such as 
quantitative trait loci (QTL) and, potentially, marker assisted 
selection (MAS). Due to the relatively more recent interest in 
Miscanthus and switchgrass, and the added difficulties of ge-
notyping and genetic mapping outcrossing (self-incompati-
ble) species with large and highly heterozygous genomes, the 
development of QTL and MAS is behind that of many other 
species. Nevertheless, flowering time QTL have now been 
identified in both species (Ali et al., 2019; Ge et al., 2019; 
Gifford et al., 2015; Tornqvist et al., 2018), and the process 
of identifying genes regulating flowering time control can 
begin.
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We utilized the M. sinensis genetic map developed by 
Ma et al. (2012), as well as two maps from switchgrass: one 
published by Serba et al. (2013), and a second from a Noble-
Ceres mapping family, which is proprietary to Ceres, Inc., 
and segregates for many agronomic traits affecting yield. 
We combined phenotypic data from replicated field trials to 
perform parallel QTL scans for flowering time in these two 
biomass crops, thereby also enabling more general analyses 
of synteny and colinearity between the Andropogoneae and 
Paniceae tribes.

2 |  MATERIALS AND METHODS

2.1 | Experimental populations

Table  S1 shows the three full-sib mapping populations 
that were studied. The M. sinensis Mx2 population is an 
outcrossing family from two heterozygous parental lines 
that expressed phenotypic variation in flowering time, as 
described previously (Ma et al., 2012). This map was con-
structed using genotyping-by-sequencing (GBS)-derived 
SNP markers (Ma et  al.,  2012). The AP13  ×  VS16 is a 
full-sib pseudo-testcross and was derived from a cross 
between a lowland Alamo genotype: AP13 as a female, 
and an upland Summer genotype, VS16 as a male parent 
(Missaoui et al., 2005; Serba et al., 2013). The SG2 × SG1 
is also a full-sib pseudo-testcross mapping population. 
The two parental genotypes were selected, based on their 
distinct morphologies, from a natural lowland population 
collected from Tennessee, United States. The SG1 plant 
had short, yellowish-green leaves and a sprawling growth 
habit, while the SG2 plant was tall, with many stems and 
blue-green leaves. The map was constructed using markers 
in common with the AP13 × VS16 map.

2.2 | Field experiments

The field trial for the Miscanthus mapping family was es-
tablished near Aberystwyth (52.43°N, 3.99°W), on the west 
coast of Wales, United Kingdom. In May 2007, three clonal 
replicates generated from each of the 216 genotypes were 
planted following a randomized complete block design with 
three replications. Planting spaces were 1.5 m between rows 
and columns. Positions on the perimeter of the trial area 
and between blocks were planted with Mxg. An automatic 
weather station at the trial site provided the daily climate 
data, that is, rainfall, temperature, radiation and humidity. 
Heat accumulation, in degree days, was calculated on a 
daily time step above a threshold temperature of 10°C, using 
equations described previously (McVicker,  1946). Pre-
emergence glyphosate (2 L/ha) and postemergence Stomp® 

Aqua (1.5 L/ha) herbicides were used for weed control until 
the site was well established. NPK fertilizer (14:14:21) was 
applied at a rate of 11.3 g per plant in the second year.

The field experiment for the AP13 × VS16 and SG2 × SG1 
switchgrass mapping populations was conducted at two lo-
cations in southern Oklahoma, United States. The two loca-
tions were Noble Research Park at Ardmore, OK (34.1120°N, 
97.5376°W, soil type: Alfisolsa Wilson silt loam soil) and the 
Noble Red River Farm near Burneyville, OK (33.9079°N, 
97.2889°W, soil type: Mollisolsa Minc fine sandy loam). The 
field experimental designs of the two populations were the 
same. A total of 251 full-sib progeny, duplicates of the parental 
genotypes, and an Alamo genotype were evaluated in an R-256 
honeycomb design (Fasoula & Fasoula, 2000) with four rep-
lications. The field experiments at Burneyville and Ardmore 
were transplanted on April 22, 2008 and August 27, 2008 
respectively. Plant spacing was maintained at 1.5 m between 
plants with a row spacing of 1.3 m and even rows staggered at 
0.75 m. The seedbed preparation, establishment, fertilizer ap-
plication, supplemental irrigation, weed control and interplant 
cultivation was as described by Serba et al. (2015).

2.3 | Phenotypic data

Flowering times in Miscanthus were recorded in 2009, 2010 
and 2011. Flowering development was divided into four 
flowering stages (FS1–4) as described previously (Jensen 
et al., 2011). Briefly, FS1 was the day of year (DOY) when 
the first flag leaves emerged; FS2 was the DOY when 1 cm 
or more of the panicle was showing on at least one stem; FS3 
was the DOY when approximately 50% of stems contributing 
to canopy height had exerted more than 1 cm of panicle; and 
FS4 was the DOY when more than 80% of the stems contrib-
uting to canopy height had exerted greater than 1 cm of the 
panicle. These stages were denoted as ‘FSnDOY’ where n is 
the number of the flowering stage. In addition to the above, in 
2010 and 2011 the DOY when anthesis commenced (AN) was 
also recorded. Data were collected from the day the first flag 
leaf became visible until no further flowering development 
was observed at the end of the season. Observations were 
made two to three times a week during the flowering period.

Heading in switchgrass was recorded as a proxy trait for 
flowering (in general, flowering is 2–4 days after heading), 
for ease of recording, and was collected at Ardmore and 
Burneyville in 2009 and 2010. Heading date was recorded 
when approximately 50% of the tillers in a plant showed in-
florescence emergence, meaning that flowering had already 
started in some of the plants. Regrowth date was scored for 
each plant when new shoots came out of the crown in the 
spring. The number of days elapsed between the regrowth 
and heading dates was considered the length of the vegetative 
growth period.
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2.4 | Linkage maps

The genetic map construction for the M. sinensis mapping 
population was described previously (Ma et al., 2012). Briefly, 
the composite map comprised 3,745 GBS-derived SNP mark-
ers spanning 2,396  cM on 19 LGs with an average resolu-
tion of 0.64  cM. For switchgrass, we used the Noble-Ceres 
AP13 × VS16 map, which was constructed independently by 
Ceres, Inc., using a different set of markers to those published 
previously (Serba et  al.,  2015). Both the AP13  ×  VS16 and 
SG2 × SG1 maps identified all 18 LGs expected for the tetra-
ploid switchgrass. The homologous linkage relation between 
the two maps was also established based on common markers 
and common alignment to a sorghum reference genome, using 
Persephone (https://perse phone soft.com/). The AP13 × VS16 
map consists of 946 SNP and SSR markers covering 2,183 cM, 
and the SG2 × SG1 map contains 562 SNP and SSR markers 
spanning 2,036 cM.

2.5 | QTL mapping

Detection of QTL in both species was performed using 
MapQTL 5 (Van Ooijen,  2004) and using mean FSnDOY 
or heading dates for each Miscanthus or switchgrass geno-
type respectively. Following initial runs using the Interval 
Mapping method, markers with the highest logarithm of odds 
(LOD) score were selected and used as initial cofactors in 
Multiple QTL Model (MQM) mapping analyses. The MQM 
analyses were reiterated by adding or adjusting one cofactor 
each run. Cofactors were verified by backward elimination 
using ‘Automatic Selection of Cofactors’ within the software 
(Van Ooijen, 2004).

Due to the large number of markers in the outcrossing pseu-
do-testcross populations, we used two approaches to reduce 
prohibitively lengthy MQM run times without substantially 
sacrificing resolution and power to detect QTL. First, in an ex-
ploratory analysis, we recoded genotypes from Cross Pollinator 
(CP), where parental lines are heterozygous with unknown 
linkage phases to double haploid genotypes. Next, we split the 
consensus map into maternal and paternal maps, concatenated 
these maps and performed an MQM scan on the resulting con-
catenated map, which excluded fully informative hk x hk mark-
ers (i.e. when markers are heterozygous in both parents).

Once potentially significant QTL were identified using 
this exploratory analysis, we selected cofactors and repeated 
the MQM analysis using CP genotype codes and all marker 
types. We then performed MQM runs using CP genotype 
codes but trimmed the number of markers used to achieve 
densities of one marker every 1, 2, 3, 4 or 5 cM. These anal-
yses were done in an iterative, stepwise fashion, and the 
density of markers was chosen based on the number of co-
factors used. The final QTL and cofactors chosen were then 

visualized using GoldenHelix SVS software (http://golde 
nhelix.com/). Once the MQM analyses produced the choice 
of a final model, additive (a) and dominant (d) effects were 
estimated for each significant QTL (Data S1). The ratio of 
dominant over additive effects was used as an indication of 
QTL mode of action (Hua et al., 2003). We also calculated 
the proportion of variance explained (PVE) by each QTL, 
acknowledging that Beavis effects likely resulted in substan-
tially inflated effect size estimates (Beavis, 1998).

2.6 | Reference mapping of QTL

Marker positions were established in Miscanthus (M. sinensis 
v7.0) and switchgrass (P. virgatum v1.1) using NCBI 
BLASTn v2.6.0 (Altschul et  al.,  1990) alignment to refer-
ence genome assemblies downloaded from Phytozome12 
(Goodstein et al., 2012). The M. sinensis assembly is 2.08Gb 
in length, of which 1.9 Gb (90%) is in 19 chromosomes that 
contain 91% of the annotated genes, whereas 68% of the  
P. virgatum assembly is in 18 chromosomes, named 1–9 (a 
or b) in accordance with the reference genome of the closely 
related foxtail millet (Setaria italica). Marker flanking se-
quences were 30–60 bases in length for the M. sinensis map 
and 500 bases for P. virgatum. Taking into account allopoly-
ploidy in the Miscanthus genus (Kim et  al.,  2014) and the 
likelihood of chromosome-level homology, BLAST hits of 
marker sequences were stringently filtered to a maximum of 
one gap and three SNPs. Syntenic blocks were then identi-
fied using BLASTN using criteria of alignments of lengths 
greater than 100  bp and e-values greater than or equal to 
0.00005. Synteny graphs were generated using Circos plot 
(Krzywinski et al., 2009).

2.7 | Candidate gene identification

Gene Ontology (GO) annotation was performed on candi-
date genes in the region of peak QTL, comprising top scor-
ing markers, using the EggNOG orthologous group database 
(Huerta-Cepas et al., 2016) v4.5.1. Literature searches were 
carried out for genes with relevant GO annotations.

3 |  RESULTS

3.1 | Miscanthus flowering time diversity

Table  S2 presents a summary of the average DOY different 
flowering stages which occurred for the parental accessions 
Mb111 and Mb121, and the range of DOY values among 
progeny. Transgressive segregation among progeny resulted in 
panicle emergence FS2 values ranging from 188 to 232 days, 

https://persephonesoft.com/
http://goldenhelix.com/
http://goldenhelix.com/
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whereas average DOY of FS2 in the parental accessions Mb111 
and Mb121 were 201 and 220 respectively. A similar degree of 
transgressive segregation was observed for all flowering stages. 
Consecutive flowering stages (e.g. FS3 and FS4) were strongly 
correlated, but correlations were weaker between more tempo-
rally distant stages such as FS1 and AN (Figure S1). Comparing 
parental accessions in different years, flowering stages were 
significantly different (ANOVA p < .05), with the exception of 
FS4, where the difference between Mb111 and Mb121 was not 
statistically significant (data not shown).

While the parental effects remained consistent during all 
flowering stages, the year effect tended to change signifi-
cantly towards earlier flowering time in 2011. This could 
be attributed to the crop's growth maturity that led to an 
earlier flowering time in year three relative to years one or 
two. However, we observed significant positive correlations 
between corresponding flowering stages in different years. 
Similarly strong correlations were reported in 459 M. sinensis  
accessions, in different years (Zhao et al., 2013).

3.2 | Switchgrass heading date diversity

In Ardmore and Burneyville, both populations (SG2 × SG1 
and AP13  ×  VS16) exhibited a shorter duration of heading 
(from the first to the last observations) in 2010 compared to 
2009 (Figure  S2; Tables  S3 and S4). Heading duration in 
Ardmore and Burneyville for SG2xSG1 progeny in 2009 ex-
tended over 58.7 and 56 days, respectively, and 28 and 26.7, 
respectively in 2010 (Table S3). Likewise, heading periods in 
the AP13 × VS16 population were 71.7 and 62.7 days in 2009, 
and 29.2 and 28.8 days in 2010, in Ardmore and Burneyville, 
respectively (Table S4). However, at each location significant 
correlations were observed between the heading dates recorded 
during the 2 years. For instance, among the SG2 × SG1 popu-
lation, correlations of 0.74 and 0.59 (p < .001) were observed 
at Ardmore and Burneyville respectively.

The mean DOY of heading date in parental lines SG1 
and SG2 were 168.5 and 169.5 in Ardmore and 169.3 and 
176.0  days in Burneyville respectively. In the progeny, the 
heading dates ranged from 155.3 to 182.0 days in Ardmore, 
and 160.3 to 188.3 in Burneyville (Table S3). The average 
DOY of heading date in 2010 for parental lines VS16 and 
AP13 was 151.3 and 183.1 in Ardmore and 154.6 and 179.9 
in Burneyville respectively. The heading date DOY in their 
progeny ranged from 151.8 to 183 days in the same year with 
no significant difference between the locations (Table  S4). 
However, location had significant (p < .05) effect on head-
ing dates of the SG2 × SG1 mapping population and their 
parental lines. On average, plants in Ardmore started heading 
3.5 days earlier than in Burneyville. Unlike the AP13 × VS16 
population, progeny of SG2xSG1 expressed transgressive 
segregation at both locations.

3.3 | Identification of QTL for flowering 
time in Miscanthus

A LOD score of greater than 3.5 was considered significant, 
based on permutation tests, thus a total of 24 QTL were 
detected across the five flowering stages in Miscanthus 
(Figure  1; Table  S5; Figures  S3–S7). All five flowering 
stages showed a strong or very strong QTL in M. sinensis 
LG 4 between 58 and 70 cM (Figure 1). In this region, the 
QTL for anthesis (qAN2) had an LOD score of 15.1–17.03, 
and the PVE was 29% (Table 1). The data for these QTL 
suggest qFS2-A has an over dominant effect, while the 
other colocalized QTL in this region expressed strong addi-
tive effects. In our study, marker M00780 was either the top 
scoring marker for the QTL or among the most significant 
markers.

Out of 24 significant QTL in Miscanthus only four were 
the product of unexplained genetic interactions, while the 
additive effect was the prevalent genetic component for the 
remaining QTL. This points to the potential for manipulating 
flowering time in Miscanthus using marker M00780 through 
direct selection of parental lines or progeny in segregating 
populations.

3.4 | Identification of QTL for heading date 
in switchgrass

Seven QTL were identified for heading date in popula-
tion AP13 × VS16 and four QTL in population SG2 × SG1 
(Figures S8 and S9; Figure 2; Table 2). The QTL landscape 
in the upland (northern) and lowland (southern) ecotype 
cross, AP13  ×  VS16, had clear similarities with the all 
southern SG2 × SG1 progeny. Of particular significance is 
the qPvHD1c, a SG2 × SG1 QTL with major effect (LOD 
21.79) at 86  cM on LG ‘L2B’ that explains 26.9% of phe-
notypic variation, though this estimate does not account for 
Beavis effects (see Section 2). Corresponding to qPvHD1c 
are the two QTL at similar positions in the AP13  ×  VS16 
cross; qPvHD1a at 87 cM in ‘L2A’ and qPvHD1b at 84 cM 
on ‘L2B’. Both crosses have similarly sized QTL in LG 6B 
and 8A/9A, although the current maps did not show these 
loci as very close. There are also differences between the 
two crosses; the strongest QTL in AP13 × VS16 is qPvHD3 
(LOD 6.8) at 44 cM in LG 4A, but a corresponding QTL was 
not found in SG2 × SG1.

3.5 | QTL synteny in Miscanthus and 
switchgrass

Due to the significance of QTLs on Miscanthus LG04, mark-
ers within 58–70  cM were chosen to search for candidate 
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genes. Stringent BLAST analysis of flanking sequences of 
these markers to chromosomal homologues resulted in hits 
on LG 4 between 74.2 and 85.2 Mb. Furthermore, compara-
tive mapping revealed that the two QTL on LG2A and LG2B 
in both populations of switchgrass and the five colocalized 
Miscanthus QTL on LG04 were syntenic QTL. Additionally, 
these QTL corresponded to same genome region on chromo-
some 2 in sorghum (Table S6), suggesting the underlying loci 
may play a key role in flowering time/heading date of both 
species.

3.6 | Identification of candidate genes

The Miscanthus LG04 QTL spans 74.2–85.2 Mb and 448 genes, 
which make up 11% of the 4,097 putative genes that have been 
annotated on this chromosome. In the QTL region, 377 genes had 
predicted orthologues by EggNOG (Huerta-Cepas et al., 2016). 
Using a literature search, we identified 11 genes in this region 
with GO terms associated with regulation of flowering time 
(Table 3). These included a Squamosa promoter-binding pro-
tein-like (SPL) transcription factor (Misin04G229700) within 

F I G U R E  1  Miscanthus flowering 
time quantitative trait loci mapping. Plots 
are representative of the whole Miscanthus 
genome and position of single nucleotide 
polymorphic markers with time of (a) flag 
leaf emergence, (b) panicle emergence,  
(c) panicle emergence on >50% of stems, 
(d) panicle on >80% of stems and (e) onset 
of anthesis. The Y-axis represents –log10  
(p values)

(a)

(b)

(c)

(d)

(e)

T A B L E  1  Colocalized quantitative trait loci (QTL) based on linkage group and genome-wide logarithm of odds (LOD) significance for 
different stages of flowering in Miscanthus sinensis (for brevity, negative additive effect relates to Mb111 and positive to Mb121)

QTL
Linkage 
group Position (cM)

Peak 
marker LOD

PVEa  
(%)

Additive 
effect (a)

Dominant 
effect (d)

QTL 
mode d/|a|

qFS1-A 04 62.3–70.65 M04969 8.75 15.53 3.8 −1.49 −0.39

qFS2-A 04 58.07–70.04 M00780 7.79 11.25 −0.76 −4.33 −5.73

qFS3-A 04 66.01–70.04 M00780 10.96 19.45 4.4 −5.16 −1.17

qFS4-B 04 62.17–66.01 M01749 4.37 7.9 2.38 −2.99 −1.26

qAN2 04 66.01–70.04 M00780 17.03 29 4.85 −1.37 −0.28
aProportion of variance explained (PVE) is acknowledged as a naïve estimate (see Section 2). 
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0.8  Mb of the qFS1 peak marker, a MADS-box transcrip-
tion factor SEPELLATA2 (Misin04G240700) less than 1 Mb 
from top scoring QTL markers and a gibberellin-responsive 
bHLH137 transcription factor (Misin04G243500) within 
0.4 Mb of the flowering time peak markers.

The switchgrass peak marker, csw165, for qPvHD1a 
mapped to about 100  kb from PvSPL (Ba01711) on 
LG 2A (Table  4) and within 200  kb of its orthologue 
Misin04G240700 in the Miscanthus sinensis genome. On 
the other hand, csw1478, the peak marker for qPvHD1b on 

F I G U R E  2  Switchgrass heading date quantitative trait loci mapping. Plots are representative of the whole switchgrass genome and position 
of single nucleotide polymorphic markers for (a) AP13xVS16 and (b) SG2xSG1. The X axis is the switchgrass linkage groups, which are based on 
sorghum synteny. The Y-axis represents –log10 (p values)

(a)

(b)

T A B L E  2  Switchgrass heading date quantitative trait loci (QTL) based on linkage group and genome-wide logarithm of odds (LOD) 
significance (for brevity, negative ‘a’ relates to SG1 or VS16 and positive to SG2 or AP13)

QTL Population
Linkage 
groupa 

Foxtail 
millet 
chroms

Position 
(cM)

Peak 
marker LOD

PVEb  
(%)

Additive 
effect (a)

Dominant 
effect (d)

qPvHD1a AP13 × VS16 2A 2 86.998 csw165 3.25 2.4 1.71 0.18

qPvHD1b AP13 × VS16 2B 2 84.488 csw1478 5.66 8.1 −2.81 4.71

qPvHD2 AP13 × VS16 3B 5 101.51 csw1955 5.83 6.8 −2.35 −1.53

qPvHD3 AP13 × VS16 4A 1 44.225 csw11037 6.81 13.8 1.8 1.7

qPvHD4a AP13 × VS16 6B 7 76.845 csw11172 5.77 8.9 −1.7 0.63

qPvHD5a AP13 × VS16 8A/9A 3 70.53 csw1509 4.55 7.8 0.53 2.86

qPvHD6 AP13 × VS16 10A 4 41.302 csw1853 4.36 7 −2.25 0.49

qPvHD1c SG2 × SG1 2B 2 85.993 csw1945 21.79 26.9 −4.87 −1.72

qPvHD1d SG2 × SG1 2A 2 64.637 csw11215 7.43 8.8 1.68 −1.74

qPvHD4b SG2 × SG1 6B 7 57.14 csw2406g 3.55 4.1 −1.8 −0.13

qPvHD5b SG2 × SG1 8A/9A 3 83.351 csw1349 6.7 6.8 0.8 −1.06
aLinkage groups of switchgrass are based on sorghum chromosomes. 
bProportion of variance explained (PVE) is acknowledged as a naïve estimate (see Section 2). 
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LG2B in the AP13xVS16 population, mapped to 99.0 Mb on 
Miscanthus LG04.

4 |  DISCUSSION

Mapping populations generated from the perennial grasses 
M. sinensis and switchgrass exhibited a wide variation in 

flowering time. Despite considerable cross species differ-
ences, our data indicate the presence of striking colocalized 
QTL on Miscanthus LG04 and switchgrass LG2, denoting a 
potentially evolutionarily conserved chromosome block for 
flowering time in these perennial species. In this region, a 
major QTL on LG2 is reported to underpin flowering time 
in a Lowland  ×  Upland switchgrass pseudo-F1 population 
(Tornqvist et al., 2018). Orthologues of known flowering time 

T A B L E  3  Candidate genes under the Miscanthus sinensis LG04 QTL

Gene/marker Ref. Pos. (Mb) GO term Gene name

M62525 74.2

Misin04G201400 74.5 FLOWER GAMETE EXPRESSED 1

Misin04G207500 76.4 GBRESPOND Alpha-amyl C2

Misin04G212600 77.5 FLOWER glucose-6-phosphate isomerase 1, chloroplastic-like

M01749 80.5

M04969 81.3

Misin04G227500 81.6 FLOWER serine/threonine-protein kinase UCN-like

Misin04G229700 82.1 FLOWER Squamosa promoter binding protein-like (SPL/SBP 
domain) transcription factor family protein

csw165 82.3

Misin04G230700 82.3 FLOWER splicing factor U2af small subunit A-like

Misin04G233100 82.7 FLOWER tetraketide alpha pyrone reductase
1 dihydroflavonol-4-reductase

Misin04G238500 83.9 FLOWER 3-deoxy-mannooctulosonate cytidylyl-transferase

Misin04G240200 84.2 FLOWER Meiosis-specific protein
PAIR2

Misin04G240700 84.3 FLOWER Developmental protein SEPALLATA2 MADS-box 
transcription factor 8

Misin04G243500 84.8 GBRESPOND Transcription factor bHLH137

M00780 85.2

M06653 87.9

SNP markers are shown in bold, and show the position of candidate genes relative to the markers.

T A B L E  4  Conserved synteny of Miscanthus sinensis LG04 QTL cluster candidates in Panicum virgatum linkage group 2A, showing gene 
identifiers and positions in each reference and a common gene descriptor

M. sinensis LG04 locus (Mb) Gene description P. virgatum LG2A locus (Mb)

Misin04G212600 77.5 glucose-6phosphateisomerase1, chloroplastic-like Ba01978.1 25.6

Misin04G227500 81.6 serine/threonine protein kinase UCN-like Ba01728.1 21.8

Misin04G229700 82.1 Squamosa promoter-binding protein-like (SPL/SBP) Ba01711.1 21.7

csw165 82.3 21.6

Misin04G230700 82.3 Splicing factor U2af
Small subunit A-like

Ba01701.3 21.6

Misin04G230700 82.3 Splicing factor U2af
Small subunit A-like

Ba01701.2 21.6

Misin04G233100 82.7 Tetraketide alpha pyrone reductase Ba01683.1 21.4

Misin04G240200 84.2 Meiosis-specific protein
PAIR2

Ba01532.1 19.9

Misin04G240700 84.3 Developmental protein SEPALLATA2/MADS box TF Ba01535.1 20.0

Misin04G243500 84.8 TF bHLH137 Ba01554.1 20.2
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genes residing within the QTL identified by Tornqvist et al. in-
clude genes involved in: the circadian clock and photoperiod 
detection (PSEUDO-RESPONSE REGULATOR 5), tran-
scriptional activation of the floral repressor FLOWERING 
LOCUS C in the autonomous pathway (SUPPRESSOR 
OF FRIGIDA 4) and the floral meristem identity gene 
(APETALA 1). The top scoring markers in the QTL identi-
fied in the present study afford greater than twofold additive 
to dominance effects suggesting these QTL, once confirmed, 
could be used for implementing MAS in order to, for exam-
ple, delay flowering in M. sinensis or switchgrass to increase 
biomass yield or improve yield quality.

Our analysis located these QTL in both Miscanthus and 
switchgrass in synteny with 63.1–65.8 Mb on chromosome 
2 of sorghum and closely related grasses in the Poaceae fam-
ily (Figure  3). Several studies in sorghum have shown this 
chromosomal block accommodates a prominent QTL for 
flowering time (El Mannai et al., 2012; Srinivas et al., 2009). 
This flowering QTL was discovered in different sorghum 
mapping populations, as well as in a Recombinant Inbred 
Lines population of 96B × IS18551 (Srinivas et al., 2009), 
and an F2 generation of Kikuchi Zairai × SC 112 (El Mannai 
et al., 2012), which is located in the flanking region of an SSR 
marker, Xtxp298 (Srinivas et al., 2009). Furthermore, a study 
on brassinosteroids in sorghum identified a QTL for flower-
ing time in the flanking region of Xtxp298. Subsequently, the 
authors suggested BR INSENSITIVE KINASE INHIBITOR 1 
(BKI1) as a candidate gene with pleiotropic effects governing 
the flowering time and several growth aspects in sorghum 
(Perez et al., 2014). On the other hand, the Xtxp298 marker 
was shown to be tightly associated with a QTL for the stay-
green trait (Galyuon et al., 2016), a characteristic that delays 

senescence postflowering and could result in greater biomass 
yield (Clifton-Brown et al., 2002; Gregersen et al., 2013).

In this context, a GLUTAMATE S-SEMIALDEHYDE 
DEHYDROGENASE (Sobic.002G215700) was proposed as 
a candidate gene governing the stay-green trait in coordi-
nation with three other QTL (Johnson et  al.,  2015). Given 
the complex nature and independent biological pathways of 
flowering time and stay-green traits, the phenotypes are often 
found to be correlated (Miryeganeh et al., 2018). This was at-
tributed to either phenological synchronization (Miryeganeh 
et al., 2018) or a linkage disequilibrium block that comprised 
genes underpinning a stay-green tendency and day length in-
sensitivity (Thomas & Ougham, 2014).

A large number of genes are involved in the control of 
flowering, and flowering itself is impacted by diverse en-
vironmental and metabolic signalling pathways (Buckler 
et al., 2009). The age-related flowering pathway can trigger 
floral transition if other inducing conditions fail (Teotia & 
Tang,  2015; Wang et  al.,  2009). Two miRNAs are critical 
components of this pathway—the evolutionarily conserved 
miR156 suppresses flowering by repressing SQUAMOSA 
PROMOTER BINDING-LIKE (SPL) transcription factors, 
and flowering activator miR172 (Amasino,  2010; Wang 
et  al.,  2009). miR172 promotes flowering by repression of 
APETALA 2-like floral transition repressors (Aukerman 
& Sakai,  2003). The observed declining abundance of 
miR156 transcripts with age in perennial species (Bergonzi 
et  al.,  2013; Wang et  al.,  2011) is potentially an endoge-
nous cue that stimulates flowering (Bergonzi et  al.,  2013). 
The miR156/SPL transcription factor pathway is an ele-
ment in floral initiation in P. virgatum (Johnson et al., 2017). 
Overexpression of the maize Corngrass1 (Cg1) gene, which 

F I G U R E  3  Miscanthus sinensis 
LG04 flowering time quantitative trait loci 
(QTL). (a) Alignment of the QTL with 
closely related grass Sorghum bicolor. (b) 
Map position of notable flowering genes on 
the QTL. (c) Circos plot shows conserved 
synteny for M. sinensis LG04 QTL with 
closely related grasses. The QTL aligns with 
S. bicolor 2:61971372-64834820; Setaria 
italica 2:33511249-37154674; Zea mays 
7:126570974-139145447; Brachypodium 
distachyon 4:38082269-40674492; Panicum 
virgatum 2a: 25824490-19834290; Oryza 
sativa 9:17459774-20012773

(a) (b) (c)
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encodes miRNA156, delays flowering in maize and prevents 
flowering in switchgrass (Chuck et al., 2011).

In Miscanthus, the identified QTL includes two genes 
previously identified as being part of the age-related flow-
ering pathway. The SQUAMOSA PROMOTER BINDING 
PROTEIN-LIKE (SPL/SBP domain) family protein 
(Misin04G229700) is within 0.8 Mb of the peak marker of 
Miscanthus qFS1-B and its orthologue is within 100kb of 
switchgrass qPvHD1a. This conserved transcription factor 
in the age-dependent pathway (Shalom et  al.,  2015; Wang 
et al., 2009; Wu et al., 2009) is known to modulate flowering 
in switchgrass (Baxter et al., 2018; Johnson et al., 2017).

The MADS-box transcription factor SEPELLATA2 
(Misin04G240700) is also part of the age-dependent flowering 
pathway (Balanza et al., 2018; Wu et al., 2009). This transcription 
factor is within 1 Mb of the QTL peaks of qFS2-A, qFS3-A and 
qAN2, and is 91% identical to MADS-box transcription factor 8 
(OsMADS8), a member of the SEP3 clade (AtSEPALLATA) that 
controls floral organ specification (Cui et al., 2010). A gibberel-
lin-responsive bHLH137 transcription factor (Misin04G243500) 
is also within 0.4 Mb of the QTL peaks of qFS2-A, qF3-A and 
qAN2. A similar gene is a regulator of the anthocyanin pathway 
in Gerbera hybrida (Elomaa et al., 1998).

The remaining QTL contained genes that had previously 
been characterized for flowering. However, these were gen-
erally specific to either Miscanthus or switchgrass and were 
mid- to minor-effect QTL. This may point to the complexity 
and specificity of the biological pathways governing flower-
ing time in each species.

Despite great ecological and genetic differences between 
the AP13 × VS16 and SG2 × SG1 populations and the exis-
tence of reported significant family × location × year inter-
actions for flowering in switchgrass (Bhandari et al., 2010), 
notable QTL were identified on comparable LGs, and map 
positions of significant markers in the two populations were 
remarkably similar. Expanding markers in these genomic re-
gions would facilitate fine mapping and subsequent identifi-
cation of markers closely linked to flowering traits.

Although the detection of syntenic flowering QTL across 
such a broad phylogenetic distance is not unprecedented for 
the Poaceae (Armstead et  al.,  2004; Chardon et  al.,  2004; 
Mauro-Herrera et  al.,  2013), it raises intriguing evolution-
ary questions. Was there an ancestral QTL that retained its 
relative importance over millennia of exposure to ionizing 
radiation? Or did the mutations underlying the QTL evolve 
in parallel in multiple genera and species? Answering these 
questions will be difficult without more specific and defin-
itive information about the polymorphisms underlying the 
QTL, but analysis-oriented QTL catalogues within and be-
yond the Saccharineae clade (Zhang et al., 2013), as well as 
the ongoing larger scale genome-wide association studies in 
multiple Miscanthus species (Clifton-Brown et  al.,  2019), 
will provide at least initial insights.
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