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Summary

� Increasing demands for food and energy require a step change in the effectiveness, speed

and flexibility of crop breeding. Therefore, the aim of this study was to assess the potential of

genome-wide association studies (GWASs) and genomic selection (i.e. phenotype prediction

from a genome-wide set of markers) to guide fundamental plant science and to accelerate

breeding in the energy grassMiscanthus.
� We generated over 100 000 single-nucleotide variants (SNVs) by sequencing restriction

site-associated DNA (RAD) tags in 138 Micanthus sinensis genotypes, and related SNVs to

phenotypic data for 17 traits measured in a field trial.
� Confounding by population structure and relatedness was severe in na€ıve GWAS analyses,

but mixed-linear models robustly controlled for these effects and allowed us to detect multiple

associations that reached genome-wide significance. Genome-wide prediction accuracies

tended to be moderate to high (average of 0.57), but varied dramatically across traits. As

expected, predictive abilities increased linearly with the size of the mapping population, but

reached a plateau when the number of markers used for prediction exceeded 10 000–20 000,

and tended to decline, but remain significant, when cross-validations were performed across

subpopulations.
� Our results suggest that the immediate implementation of genomic selection in Miscanthus

breeding programs may be feasible.

Introduction

Cost-efficient genotyping protocols based on next-generation
sequencing (Davey et al., 2011) have narrowed the gap between
model and non-model plants, thereby creating great opportuni-
ties in crop breeding (Hamblin et al., 2011; Morrell et al., 2012).
Two approaches that are likely to have particularly strong and
widespread impacts are the dissection of complex traits through
genome-wide association studies (GWASs; Cardon & Bell,
2001) and genome-wide phenotype prediction (genomic selec-
tion; Meuwissen et al., 2001). By informing fundamental science
and applied breeding, respectively, these two approaches have the
potential to bridge the molecular and statistical void between
phenotype and genotype, thereby shedding light on key biologi-
cal questions.

With increasing demands for food and energy, decreasing land
base and changing environmental conditions (Foley et al., 2011;
Valentine et al., 2012), the urgency to develop accelerated crop
breeding strategies cannot be overstated. The use of lignocellu-
losic energy crops is one of many potential mitigating factors for
this problem, but the widespread adoption of these crops has

been slow and hampered by a number of technological and eco-
nomic challenges, with major breakthroughs required both in
terms of biomass yield on low-value lands and conversion effi-
ciency (Sims et al., 2010; Feltus & Vandenbrink, 2012; Service,
2013). Genomic approaches (e.g. GWAS and genomic selection)
can substantially facilitate these breakthroughs and are therefore
among the focal points in this area of research (Rubin, 2008;
Feltus & Vandenbrink, 2012; Slavov et al., 2013a).

The tropical C4 grass Miscanthus is a promising energy crop
because of its broad adaptability, potentially very high yields and
low requirements for agricultural inputs (Clifton-Brown et al.,
2004, 2007; Hastings et al., 2009). However, Miscanthus species
are undomesticated, and several breeding programs in East Asia,
Europe and North America are targeting the accelerated develop-
ment of hybrids and varieties that are high yielding, can be
established and maintained at low cost and have cell wall charac-
teristics that allow efficient conversion to fuels and products. In a
recent study, we used a combination of phenotypic data from a
replicated field trial and 120 molecular markers to delineate an
experimental population of M. sinensis for GWAS and genome-
wide prediction (Slavov et al., 2013b). This population had

� 2013 The Authors
New Phytologist � 2013 New Phytologist Trust

New Phytologist (2014) 201: 1227–1239 1227
www.newphytologist.com

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

Research



relatively weak substructure (FST < 0.06), but captured high levels
of genetic variation across a range of phenotypic traits related to
phenology, biomass productivity and cell wall composition.

Building on this study, we: (1) sequenced restriction site-asso-
ciated DNA (RAD) tags in 142 M. sinensis genotypes and gener-
ated over 100 000 ‘RAD-Seq’ single-nucleotide variants (SNVs);
(2) confirmed patterns of putatively neutral population structure
detected in our previous study, but also used the power of the
RAD-Seq markers to add substantial new details, including the
hypothetical geographical origins for a large number of accessions
with unknown sampling locations; and (3) assessed the potential
of GWASs and genome-wide prediction to guide biological dis-
covery and accelerated breeding inMiscanthus.

Materials and Methods

Plant materials, phenotyping and DNA extraction

We defined an experimental population of 145 M. sinensis
Anders. genotypes based on previous analyses of single-nucleotide
polymorphism (SNP) data (Slavov et al., 2013b). Of these, we
attempted RAD sequencing for 142 and obtained robust data for
138 genotypes (see section on Sample clustering, population
structure and relatedness), which were used for all subsequent
analyses (Fig. 1). In 2005, our study population was planted at
1.59 1.5 m spacing in a replicated field trial located near Aber-
ystwyth (Wales, UK), following a randomized complete block
design, with one replicate per genotype in each of four blocks.
The field trial has been described in greater detail in several previ-
ous studies (Allison et al., 2011; Jensen et al., 2011; Robson et al.,
2012). Phenotyping and DNA extraction protocols have been
described by Slavov et al. (2013b). Briefly, 17 phenotypic traits
reflecting (1) phenology, (2) morphology and biomass productiv-
ity, and (3) cell wall composition, were measured on plants in all

four replicates of the trial 2–4 yr after establishment (Table 1,
Fig. 2).

Phenotypic data analysis

Phenotypic data analyses have been described by Slavov et al.
(2013b). Briefly, mixed linear models were used to estimate vari-
ance components and best linear unbiased predictors (BLUPs)
for each trait. We also calculated phenotypic (Pearson’s r) and
genetic correlations among all pairs of traits (Fig. 2). Genetic
correlations were calculated using two different approaches. For
pairs of traits measured in the same year, we calculated genetic
correlations from estimates of genetic covariance (i.e. using Eqn
9, as described by Howe et al., 2000). Alternatively, for pairs of
traits measured in different years, we calculated genetic correla-
tions from phenotypic correlations and estimates of broad sense
heritability for each trait (i.e. Eqn 8, as described by Howe et al.,
2000).

RAD sequencing

RAD library preparation was performed by Floragenex, Inc.
(Eugene, OR, USA). Briefly, genomic DNA from each genotype
was digested with the restriction endonuclease PstI and processed
into multiplexed RAD libraries following the methods described
in previous studies (Baird et al., 2008; St€olting et al., 2013). PstI
adapters, each containing a unique 6-bp multiplex sequence
index (barcode), were affixed to digested templates, polished and
amplified via a polymerase chain reaction. The resulting RAD
libraries were run on two Illumina (San Diego, CA, USA) HiSeq
platforms at Ambry Genetics (Aliso Viejo, CA, USA) and the
Oregon State University Center for Genome Research and
Biocomputing (Corvallis, OR, USA) using Illumina 19 100-bp
chemistry.

Fig. 1 Geographical distribution and principal component (PC) analysis of population genetic structure for 138Miscanthus sinensis genotypes using
14 073 single-nucleotide variant loci. The percentages of the total variation explained by each PC are shown in parentheses.
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RAD-Seq data analysis

Sequencing adaptors and barcodes were removed using Florage-
nex software tools, resulting in 94-bp RAD fragments. These
trimmed fragments were then aligned to a reference genome
sequence using Bowtie (Langmead et al., 2009), and variants were
called using SAMtools (Li et al., 2009). The alignment and vari-
ant calling steps were repeated twice, using different reference
sequences. First, we aligned all 94-bp RAD sequences from each
genotype to v 1.0 of the Sorghum bicolor genome (Paterson et al.,
2009) and parsed the resulting SAMtools pileup files using
custom scripts. In a second analysis, we created a skeleton
Miscanthus pseudo-reference of RAD sequence data (Supporting
Information Methods S1). This assembly contained 48 426
clustered RAD sequences, representing c. 4.1 Mb of Miscanthus
genomic sequence. To further reduce the potential of identifying
spurious SNVs from low-quality sequences, reads were trimmed
from the 3′ end to a total length of 85 bp. SNV detection then
proceeded as described previously. These two approaches resulted
in the initial identification of 142 539 and 223 046 SNVs,
respectively.

We used custom scripts and VCFtools (Danecek et al., 2011)
to further filter SNV data based on alignment statistics, minor
allele frequency (MAF) and conformity of genotype frequencies
to Hardy–Weinberg expectations (Table 2). For initial data
analyses aimed at validating data quality and detecting patterns
of population genetic structure, we generated sets of SNVs that
passed relatively stringent filtering criteria, but without restricting
MAFs (i.e. ‘stringent’ filtering, Table 2). To enhance the power
of GWAS analyses and to assess the accuracy of genome-wide
prediction as a function of the number of markers used, we also
generated larger sets of SNVs using ‘liberal’ filtering criteria
(Table 2). We used the PLINK software tool (Purcell et al.,
2007) to calculate the number of unlinked SNVs (plink …
–indep-pairwise 50 5 0.2), as well as to estimate linkage disequi-
librium (LD) (plink… –ld-window-r2).

Sample clustering, population structure and relatedness

We used the individual-based principal component analysis
(PCA) approach of Patterson et al. (2006) to detect outliers and
to characterize population genetic structure based on SNV data

Table 1 Phenotypic traits measured in 142Miscanthus sinensis genotypes

Traita Definition QST
b Geo(r)c PC1 (P value)d PC2 (P value)e

Phenology
DOYFS1.9 Date of flowering stage 1: day of year when the first flag leaf

emerged
0.24 Alt (�0.66) 0.42 (< 0.001) 0.19 (0.039)

AvgeSen.9 Average senescence score (0–10) throughout the growing season 0.04 Lat (0.46) �0.19 (0.024) 0.03 (0.752)
Morphology/biomass
BaseDiameter.9 Largest plant diameter measured at ground level (mm) 0.03 Long (0.18) �0.09 (0.285) �0.30 (< 0.001)
DryMatter.9 Estimated total dry weight (g) 0.01 Alt (�0.20) �0.09 (0.295) �0.06 (0.497)
LeafLength.7 Ligule-to-tip length along the central vein of the youngest leaf

with a ligule (cm)
0.34 Alt (�0.59) 0.46 (< 0.001) 0.21 (0.013)

LeafWidth.7 Blade width at half-leaf length for the leaf used to measure
LeafLength (cm)

0.00 Lat (�0.21) 0.09 (0.270) �0.27 (0.001)

MaxCanopyHeight.9 Height from the ground to the point of ‘inflection’ of the
majority of leaves (cm)

0.18 Lat (�0.23) �0.29 (0.001) �0.03 (0.729)

Moisture.9 Estimated moisture content based on a subsample (%) 0.34 Alt (�0.66) 0.49 (< 0.001) 0.01 (0.946)
StatureCategory.7 Additive combination of StatureLeafAngle and StatureStemAngle 0.02 Long (0.37) �0.19 (0.030) �0.16 (0.054)
StatureLeafAngle.7 Three-category score reflecting leaf angle relative to the vertical 0.06 Alt (0.19) �0.16 (0.059) 0.18 (0.035)
StatureStemAngle.7 Four-category score reflecting stem angle relative to the vertical 0.00 Long (0.36) �0.15 (0.081) �0.20 (0.017)
StemDiameter.9 Diameter 10–15 cm from the ground of a randomly chosen stem

(mm)
0.00 Alt (�0.25) 0.08 (0.375) �0.08 (0.332)

TallestStem.9 Length of the tallest stem (cm) 0.46 Alt (0.57) �0.53 (< 0.001) �0.08 (0.361)
TransectCount.9 Number of stems with ≥ 50% canopy height across the middle

of the plant
0.00 Lat (0.19) 0.08 (0.370) 0.02 (0.787)

Cell wall composition
Cellulose.8 Gravimetrically measured cellulose content (% dry weight) 0.23 Alt (0.54) �0.41 (< 0.001) 0.02 (0.793)
Hemicellulose.8 Gravimetrically measured hemicellulose content (% dry weight) 0.06 Long (0.22) �0.21 (0.015) 0.13 (0.117)
Lignin.8 Gravimetrically measured lignin content (% dry weight) 0.00 Long (�0.17) 0.00 (0.959) 0.03 (0.770)

aTrait, phenotypic traits measured in 2007 (.7), 2008 (.8) or 2009 (.9) (i.e. after two, three or four growing seasons, respectively). Detailed phenotyping
protocols have been described by Slavov et al. (2013b).
bQST, genetic differentiation between ‘Continent’ and ‘Japan’ subpopulations. Values exceeding the empirical 95th percentile of putatively neutral differen-
tiation (i.e. FST = 0.23) are shown in bold (Slavov et al., 2013b).
cGeo(r), geographical coordinate with strongest correlation and Pearson’s correlation coefficient (Slavov et al., 2013b). Values with two-sided P < 0.05 are
shown in bold.
dPC1 (P value), Pearson’s correlation with the first eigenvector of population structure (Fig. 1) and two-sided P value. Values with two-sided P < 0.05 are
shown in bold.
ePC2 (P value), Pearson’s correlation with the second eigenvector of population structure (Fig. 1) and two-sided P value. Values with two-sided P < 0.05
are shown in bold.
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filtered using our ‘stringent’ criteria (Table 2), after eliminating
one marker from each pair of loci linked at r2 ≥ 0.8 (i.e. based on
genotypic correlation). Four of the 142 sequenced genotypes
were identified as outliers along four different and highly signifi-
cant axes of variation (P < 10�5 from tests based on the Tracy–
Widom distribution) based on the default settings of the
smartpca program within the EIGENSOFT package (Patterson
et al., 2006). These genotypes had not been identified as outliers
or potential M. sacchariflorus hybrids in analyses based on micro-
satellite and SNP data (Slavov et al., 2013b), and we tentatively
assumed that their detection as outliers based on RAD-Seq SNVs
was an indication of inferior RAD-Seq data quality. These geno-
types were therefore eliminated, and all subsequent analyses were
performed using phenotypic and SNV data for the remaining
138 genotypes. However, by performing a subset of analyses
based on all 142 genotypes, we also ensured that none of our
major results depended on this decision.

Patterns of population structure detected using the PCA
approach were also confirmed using the model-based clustering
approach implemented in STRUCTURE (Pritchard et al., 2000;
Falush et al., 2003, 2007), following the procedure used in a pre-
vious study (Slavov et al., 2013b). Briefly, we ran STRUCTURE
using the default model parameters and varying the assumed
number of genetic groups (K) from one to six. Each run consisted
of 10 000 burn-in iterations and 10 000 data collection itera-
tions. We used the DISTRUCT program (Rosenberg, 2004) to
visualize the results from 10 independent runs that had been
aligned using the CLUMPP program (Jakobsson & Rosenberg,

2007). We also used the results from these runs to calculate the
ad hoc statistic DK, which tends to peak at the value of K that cor-
responds to the highest hierarchical level of substructure (Evanno
et al., 2005), using the online version of the STRUCTURE
HARVESTER program (Earl & vonHoldt, 2012). Finally, we
used the GCTA program (Yang et al., 2011) to calculate the
genetic relationship matrix (Yang et al., 2010) among the 138
genotypes used in all analyses.

GWASs

We used the efficient mixed-model association expedited
approach (EMMAX; Kang et al., 2010) to perform GWASs
based on SNVs filtered using ‘liberal’ criteria (Table 2). To con-
trol for the confounding effects of cryptic relatedness and popula-
tion structure, we incorporated the identity-by-state (IBS)
kinship matrix (calculated on the basis of all markers using
EMMAX) and the first two principal components of population
structure (see Sample clustering, population structure and
relatedness). This approach is widely used and is believed to pro-
vide adequate protection against both environmental and genetic
confounding (Price et al., 2010; Vilhj�almsson & Nordborg,
2013). We used data perturbation simulations (Yu et al., 2006)
to estimate the statistical power of our EMMAX analyses, as well
as to quantify the inflation of na€ıve estimates of the proportion of
variance explained (PVE) by each detected association (Beavis,
1998; Allison et al., 2002; Ingvarsson et al., 2008). For each itera-
tion of the simulations, we randomly chose an SNV from our

Fig. 2 Genetic (below diagonal) and
phenotypic (above diagonal) correlations
among 17 phenotypic traits measured in 138
Miscanthus sinensis genotypes. Values on
the main diagonal correspond to

ffiffiffiffiffiffi

H2
p

, where
H2 is the broad-sense heritability of the 17
traits (Table 4).
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data and assigned constant additive effects �a, 0 and a (Falconer,
1989) to genotypes containing 0, 1 and 2 copies, respectively, of
an arbitrarily chosen allele (all SNVs used in this study were
bi-allelic). These effects were then added to phenotypic trait
BLUPs, and the resulting data were analyzed using EMMAX, as
described above. This approach preserves the overall structure of
the data, whilst also allowing us to estimate statistical power
across a range of allele effect sizes, as well as to compare estimated
with expected PVE values. The expected value of PVE was calcu-
lated as:

PVE ¼ 1

1þ 1
2pð1�pÞk2

; Eqn 1

where p is the estimated frequency of an arbitrarily chosen SNV
allele and k is the simulated additive effect (a) divided by the
standard deviation of the respective trait BLUPs (we used

AvgeSen.9). We chose values of k so that the expected PVE would
be between 0.01 and 0.20 in 0.01 increments, and performed
1000 simulations for each of these values. Na€ıve estimates of
PVE were calculated as the R2 from simple linear regression of
the trait BLUP, including simulated additive effects, on SNV
genotypes. This was only performed for SNVs that were signifi-
cantly associated with the simulated trait BLUP at a = 10�5.

To assess the relative severity of confounding across traits, we
also ran models that only included the IBS kinship matrix, or did
not include any terms to account for population structure and
relatedness (i.e. simple linear regression of trait BLUP on individ-
ual SNVs). In addition, we also used the multi-locus mixed-
model (MLMM) approach of Segura et al. (2012) to perform a
forward–backward model selection procedure and to potentially
improve the power, whilst also reducing the rate of false positives
of our GWAS analyses. We allowed up to nine forward selection
and backward elimination steps and performed the procedure
twice, based on MLMMs with or without the first two principal
components of population structure included as fixed effects.

Genome-wide prediction

We used the R package rrBLUP (Endelman, 2011) for genome-
wide prediction using ridge regression. For a limited subset of analy-
ses, we also used the Bayesian linear regression and the Bayesian
LASSO approaches implemented in the BLR package (Perez et al.,
2010), but the performance of genome-wide prediction using these
approaches was consistently comparable or lower than that using
ridge regression, even after including the kinship matrix in the
Bayesian models. To assess the effects of varying the size of the train-
ing population, we used 2–10-fold random cross-validations (i.e.
random allocations of genotypes to training and test populations),
which were repeated 100 times for each set of parameters.

Consistent with recommendations on standardizing analytical
procedures and benchmarking (Daetwyler et al., 2013), we quan-
tified the performance of genome-wide prediction using three
measures. First, we defined predictive ability (r) as Pearson’s cor-
relation of BLUPs calculated directly from field data and those
obtained from the marker data using ridge regression (Daetwyler
et al., 2013). Second, we calculated prediction accuracies (Accu)
by dividing predictive abilities by the square root of the broad-
sense heritability (H) of the respective trait (Legarra et al., 2008).
Finally, we also recorded the intercepts (b0) and slopes (b1) of the
simple linear regressions of BLUPs calculated from field data on
those estimated using ridge regression. The last two measures,
although not practically meaningful, can be indicative of model
deficiencies and/or non-random partitioning of genotypes into
training vs test populations (Daetwyler et al., 2013).

To assess the potential of improving the performance of
genome-wide prediction by selecting the most informative mark-
ers, we compared predictive abilities between cross-validations in
which 10, 100, 1000 or 10 000 markers were chosen randomly,
based on their GWAS significance (i.e. selecting loci with
the lowest GWAS P values) within the training population, or
based on their rrBLUP-estimated effects within the training
population.

Table 2 Filtering criteria for single-nucleotide variant (SNV) data from 138
Miscanthus sinensis genotypes

Filtering criteria Stringent Liberal

Qa 15 NA
Min depthb 14 3
Min ave depthc NA 6
Missing (%)d 10 20
Minor allelese NA 3
Max |FIS|

f 0.25 NA
Min het readsg 0.05 NA
No. of allelesh 2 2
Statistics
No. of loci (Sorg)i 20 127 53 174
Ave MAF (Sorg)j 0.027 0.174
Ave r21 kb (Sorg)

k 0.24 0.26
No. of loci (Misc)l 30 755 121 771
Ave MAF (Misc)m 0.031 0.115

aQ, minimum Phred-like SNV quality score (Li et al., 2008).
bMin depth, minimum number of reads.
cMin ave depth, minimum average number of reads across all genotypes.
dMissing (%), maximum percentage of missing genotype data allowed for
a given locus.
eMinor alleles, minimum number of copies of the minor allele among all
genotypes.
fMax |FIS|, maximum deviation of observed genotype frequencies from
Hardy–Weinberg expectations, FIS = 1 –Ho/He, where Ho and He are the
observed and expected heterozygosities.
gMin het reads, minimum proportion of reads supporting the less frequent
allele in a heterozygous genotype.
hNo. of alleles, number of SNV alleles detected.
iNo. of loci (Sorg), number of SNVs that passed all filtering criteria based
on alignments to the Sorghum bicolor genome.
jAve MAF (Sorg), average minor allele frequency for SNVs that passed all
filtering criteria based on alignments to the Sorghum bicolor genome.
kAve r21 kb (Sorg), average linkage disequilibrium (r2, calculated as geno-
typic correlation) for pairs of loci with MAF ≥ 0.10 that aligned within 1 kb
of one another in the Sorghum bicolor genome.
lNo. of loci (Misc), number of SNVs that passed all filtering criteria based
on alignments to anM. sinensis pseudo-reference.
mAve MAF (Misc), average minor allele frequency for SNVs that passed all
filtering criteria based on alignments to anM. sinensis pseudo-reference.
NA, not applicable.
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Results

RAD-Seq genotyping

Our genotyping approach resulted in the detection of over
100 000 putative SNVs (see the Materials and Methods section).
A large proportion of these SNVs did not satisfy even our ‘liberal’
filtering criteria, but even after ‘stringent’ filtering, over 20 000
informative loci were available for downstream analyses
(Table 2). As expected, the chromosome-wide distribution of
SNVs appeared to be biased, with very few SNVs detected in
putative centromeric regions (Fig. 3). At a finer scale, the vast
majority of SNVs detected based on alignments to Sorghum (i.e.
98% and 96%, respectively, for ‘stringent’ and ‘liberal’ filtering)
appeared to be located either inside or within 2 kb of genes.

As expected from the nature of RAD-Seq data, the majority of
RAD-Seq SNVs were unlinked. For example, assuming micro-
synteny between Sorghum and Miscanthus, we used the sliding
window LD-based pruning option of PLINK to calculate that
35 700 of the 53 174 SNVs detected based on alignments to

Sorghum and ‘liberal’ filtering had no other SNV within a
25-SNV up- or downstream window that was linked at r2 > 0.2.
Similarly, the 121 771 SNVs detected based on alignments to a
Miscanthus pseudo-reference and ‘liberal’ filtering were located
on 36 223 unique RAD tags. Although our data were not appro-
priate for detailed estimation of LD and historical rates of recom-
bination (i.e. because of the largely unknown physical distances
between SNVs in the Miscanthus genome), analyses based on
SNVs located on the same RAD tag suggested that fine-scale LD
is substantial (average r2 = 0.41 for SNVs with MAF ≥ 0.10,
Fig. S1). Furthermore, analyses assuming microsynteny between
Sorghum andMiscanthus clearly demonstrated that significant LD
(average r2 ≥ 0.2) extends to at least several hundred bp (Table 2)
and up to at least 1 Mb for some pairs of SNVs (Fig. S1).

Population structure

Individual-based PCA based on SNVs filtered using ‘stringent’
criteria (Table 2) resulted in the identification of five significant
eigenvectors (P < 10�4 from tests based on the Tracy–Widom
distribution), which explained between 2.9% and 1.2% of the
total SNV variation. As expected, PCA (Fig. 1) and model-based
clustering (Fig. S2) consistently delineated a ‘Continent’ vs
‘Japan’ genetic discontinuity, with both PC1 (Pearson’s
|r| = 0.83, P < 10�15) and PC2 (Pearson’s |r| = 0.72, P < 10�11)
being strongly correlated with the source longitudes of genotypes
with known sampling locations. The differentiation between
these two subpopulations was reflected in fine-scale patterns of
LD, with r2 decaying slightly more slowly in each subpopulation
than in the overall population (Fig. S1). Furthermore, the clear
pattern of clustering based on PC1 and PC2, which accounted
for 2.9% and 2.0% of the SNV variation, enabled us to form
strong hypotheses about the geographical origins of 68% (47 of
69) of the accessions with unknown sampling locations (Fig. 1).

GWASs

As expected from the relatively small size of our population, data
perturbation simulations indicated that GWAS analyses had very
limited power to detect associations with small or moderate
effects (PVE ≤ 0.10, Fig. S3). When such associations were
detected, their estimated effects tended to be upwardly biased by
as much as an order of magnitude (Fig. S3).

Na€ıve GWAS analyses that ignored the effects of population
structure and relatedness (i.e. simple linear regression of trait
BLUPs on individual SNVs) consistently resulted in severely
inflated P values (i.e. quantile–quantile (QQ) plots in Figs S4,
S5). This effect was particularly strong for traits characterized by
strong genetic differentiation (i.e. high QST between ‘Continent’
and ‘Japan’ subpopulations) and/or significant correlation with
geographical variables or primary eigenvectors of population
structure (Table 1, Figs S4, S5). The inclusion of the IBS kinship
matrix substantially mitigated the confounding for all traits,
whereas adding PC1 and PC2 further reduced the inflation of P
values for some traits (i.e. BaseDiameter.9, LeafWidth.7,
TransectCount.9), without apparently compromising statistical

(a)

(b)

Fig. 3 Chromosome-wide distribution ofMiscanthus sinensis single-
nucleotide variant loci detected based on alignments to Sorghum bicolor
and filtered using ‘stringent’ (a) and ‘liberal’ (b) criteria (Table 2). Each line
corresponds to a 1-Mb interval.
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power relative to models that only included the IBS matrix
(Figs S4, S5).

Using this conservative approach (i.e. including both the IBS
kinship matrix and PC1 and PC2 as covariates in EMMAX
analyses), we detected 35 putative associations (P < 10�5) for
SNVs resulting from alignments to the S. bicolor genome
(Fig. S4). Four of these associations (two for AvgeSen.9, one for
LeafLength.7 and one for Lignin.8) reached genome-wide signifi-
cance after Bonferroni correction for multiple testing (P < 0.05/
53 174� 9.49 10�7), whereas another 13 had an estimated false
discovery rate < 0.05 (Table 3). We detected similar patterns
using SNVs resulting from alignments to an M. sinensis pseudo-
reference (Fig. S5), with 53 SNVs reaching suggestive (P < 10�5)
and two SNVs (one for DOYFS1.9 and one for TallestStem.9)
reaching Bonferroni-corrected genome-wide significance
(P < 0.05/121 771� 4.19 10�7).

Results from the MLMM-GWAS approach were generally
consistent with those from the single-locus EMMAX analyses
(Figs S4, S6). However, the MLMM approach allowed us to
detect Bonferroni-corrected associations for two additional traits
(BaseDiameter.9 and TallestStem.9). Furthermore, when PC1 and
PC2 were included as covariates in MLMMs, the selection proce-
dure for AvgeSen.9 favored a model including six significantly
associated SNVs (Fig. S7).

Genome-wide prediction

As expected, predictive abilities were moderately correlated with
broad-sense heritabilities (Pearson’s r > 0.57, P < 0.018,
Table 4) and appeared to increase monotonically with the size
of the training population (Fig. 4a). Although considerable vari-
ation was present among the 17 traits, the intercepts and slopes

Table 3 Markers with significant phenotypic associations (false discovery rate < 0.05) in 138Miscanthus sinensis genotypes

Chromosomea Positionb Pc Qd MAFe PVEf Traitg Geneh Description/annotation

1 3 776 666 3.31E-06 0.03 0.01 0.12 TallestStem.9 Sb01g004700 ATVAMP725
1 3 789 996 2.98E-06 0.03 0.02 0.13 TallestStem.9 Sb01g004720 Aminoacyl-tRNA synthetase family
1 68 013 320 3.38E-06 0.03 0.01 0.12 TallestStem.9 Sb01g044850 Unknown protein
2 67 477 249 1.14E-06 0.03 0.01 0.16 StatureStemAngle.7 Sb02g032850 Unknown protein
2 67 477 259 1.14E-06 0.03 0.01 0.16 StatureStemAngle.7 Sb02g032850 Unknown protein
3 8 793 225 6.38E-07i,j,k 0.03 0.49 0.18 LeafLength.7 Sb03g008300 DNA binding/protein dimerization
3 65 293 238 2.79E-06k 0.03 0.05 0.02 AvgeSen.9 Sb03g037310 ATCDPMEK
3 65 293 239 2.79E-06 0.03 0.05 0.02 AvgeSen.9 Sb03g037310 ATCDPMEK
4 4 150 586 1.57E-06 0.04 0.06 0.18 LeafLength.7 NA NA
6 50 249 485 3.35E-06 0.03 0.02 0.16 TallestStem.9 Sb06g020830 Protein kinase family protein
6 54 211 630 8.64E-07i,j,k 0.05 0.17 0.15 Lignin.8 Sb06g025250 Serine-type endopeptidase/serine-type

peptidase
6 58 247 799 5.66E-07i,j 0.02 0.03 0.25 AvgeSen.9 Sb06g029670 ATP binding/protein kinase/protein serine/

threonine kinase/protein tyrosine kinase/
sugar binding

9 24 591 741 1.84E-06 0.03 0.03 0.26 AvgeSen.9 NA NA
9 46 480 666 4.07E-06 0.04 0.15 0.02 AvgeSen.9 Sb09g018620 Hydroxyproline-rich glycoprotein family

protein
10 49 962 793 4.90E-07i,k 0.02 0.04 0.21 AvgeSen.9 Sb10g022360 Unknown protein
10 55 336 585 3.14E-06j 0.03 0.01 0.12 TallestStem.9 Sb10g026010 UBP19; cysteine-type endopeptidase/

ubiquitin thiolesterase
10 59 574 096 1.50E-06j 0.03 0.05 0.19 TallestStem.9 Sb10g029835 Unknown protein

Associations with Bonferroni-corrected genome-wide significance (a = 0.05) are shown in bold. Only results for markers detected from alignments to the
Sorghum bicolor genome are shown.
aChromosome, Sorghum bicolor chromosome to which the marker was aligned.
bPosition, Sorghum bicolor chromosome position to which the marker was aligned.
cP, P value from genome-wide association studies (GWAS) analysis using the efficient mixed-model association expedited approach (EMMAX), including
the kinship matrix and the first two eigenvectors of population structure (see the Materials and Methods section).
dQ, false discovery rate calculated using the q-value R package (Dabney & Storey, 2013).
eMAF, minor allele frequency.
fPVE, na€ıve estimate of the proportion of variance explained based on simple linear regression (see the Materials and Methods section).
gTrait, phenotypic trait as defined in Table 1.
hGene, Sorghum bicolor gene to which the marker was aligned.
iSignificant at genome-wide a = 0.05 after Bonferroni correction based on EMMAX analyses (see the Materials and Methods section).
jIncluded in the optimal model according to the multiple Bonferroni criterion in multi-locus mixed-model (MLMM) analyses (see the Materials and Methods
section).
kIncluded in the optimal model according to the multiple Bonferroni criterion in MLMM analyses including the first two eigenvectors of population
structure (see the Materials and Methods section).
NA, not applicable (markers aligning to putatively intergenic positions).
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of simple linear regressions of BLUPs calculated from field data
on those estimated using ridge regression tended to be close to
their expected values of 0.00 and 1.00, respectively (Table S1).
Interestingly, both predictive abilities and accuracies of
genome-wide prediction were statistically indistinguishable
(P > 0.64 from paired t-tests across traits) between the sets of
SNVs obtained based on different alignments (Table 4). Fur-
thermore, predictive abilities tended to reach a plateau when c.
10 000–20 000 markers were used (i.e. approximately half of
the c. 35 000–36 000 presumably independent loci), with fur-
ther increases resulting in little or no improvement (Fig. 4b).
Genetic structure (Fig. 1) and the presence of closely related
genotypes in the training and test populations (Fig. S8) affected
the performance of genome-wide prediction, with predictive
abilities from cross-validations across subpopulations being sig-
nificantly lower than those from corresponding random cross-
validations (one-sided P = 0.0004 from a paired t-test across
traits). However, the extent of this difference varied consider-
ably among traits (Fig. 5). Finally, the selection of markers
based on their GWAS significance or rrBLUP-estimated effects
appears to have potential for improving predictive abilities
(Fig. 6), particularly for traits with lower heritabilities (Fig. 6b).

Discussion

As in a number of previous studies across a wide phylogenetic
range of plant species (Barchi et al., 2011; Chutimanitsakun
et al., 2011; St€olting et al., 2013), the application of RAD-Seq
genotyping resulted in the generation of large numbers of infor-
mative SNV markers (Table 2). Alignments of RAD tags to an
M. sinensis pseudo-reference resulted in the identification of
substantially greater numbers of markers (Table 2) and indistin-
guishable performance of genome-wide prediction (Table 4)
compared with alignments to the S. bicolor genome. However, it
is possible that the availability of a reference genome sequence
from a closer relative would have resulted in more informative
RAD-Seq SNV data. In any case, our results indicate that the a
priori availability of a high-quality reference genome sequence
does not appear to be a requirement for the success of this
genotyping procedure.

Although we were able to generate data for a large number of
RAD-Seq markers, the use of a methylation-sensitive enzyme
(PstI) and relatively stringent alignment criteria resulted in a
greatly unbalanced genome coverage (Fig. 3) and strong bias
against intergenic SNVs. Although probably advantageous in

Table 4 Performance of genome-wide prediction in 138Miscanthus sinensis genotypes based on single-nucleotide variant (SNV) markers filtered using
liberal criteria (Table 2)

Traita H2b rSorg (SD)
c AccuSorg (SD)

d rMisc (SD)
e AccuMisc (SD)

f

Phenology
DOYFS1.9 0.89 0.76 (0.02) 0.81 (0.02) 0.78 (0.01) 0.82 (0.02)
AvgeSen.9 0.83 0.64 (0.01) 0.71 (0.01) 0.64 (0.01) 0.71 (0.01)

Morphology/biomass
BaseDiameter.9 0.52 0.27 (0.05) 0.38 (0.06) 0.29 (0.04) 0.40 (0.06)
DryMatter.9 0.54 0.06 (0.05) 0.09 (0.07) 0.04 (0.06) 0.05 (0.08)
LeafLength.7 0.65 0.67 (0.01) 0.83 (0.01) 0.66 (0.01) 0.82 (0.01)
LeafWidth.7 0.64 0.52 (0.02) 0.65 (0.03) 0.56 (0.01) 0.70 (0.02)
MaxCanopyHeight.9 0.77 0.35 (0.03) 0.40 (0.03) 0.34 (0.02) 0.39 (0.03)
Moisture.9 0.59 0.70 (0.01) 0.92 (0.01) 0.73 (0.01) 0.95 (0.01)
StatureCategory.7 0.48 0.39 (0.03) 0.57 (0.04) 0.43 (0.02) 0.62 (0.03)
StatureLeafAngle.7 0.50 0.46 (0.03) 0.65 (0.05) 0.47 (0.02) 0.66 (0.03)
StatureStemAngle.7 0.48 0.37 (0.02) 0.53 (0.03) 0.40 (0.02) 0.58 (0.03)
StemDiameter.9 0.60 0.51 (0.03) 0.66 (0.04) 0.50 (0.02) 0.65 (0.03)
TallestStem.9 0.88 0.65 (0.01) 0.69 (0.01) 0.63 (0.01) 0.68 (0.02)
TransectCount.9 0.51 0.17 (0.04) 0.23 (0.06) 0.27 (0.03) 0.39 (0.04)

Cell wall composition
Cellulose.8 0.79 0.62 (0.02) 0.70 (0.02) 0.61 (0.02) 0.69 (0.02)
Hemicellulose.8 0.60 0.25 (0.03) 0.32 (0.04) 0.18 (0.04) 0.24 (0.05)
Lignin.8 0.66 0.43 (0.02) 0.53 (0.03) 0.35 (0.02) 0.43 (0.03)

Average (SD)g 0.64 0.46 (0.20) 0.57 (0.22) 0.46 (0.20) 0.57 (0.23)

All predictive abilities and accuracies are based on 100 random 10-fold cross-validations (i.e. using a training population with N = 124 genotypes).
aTrait, phenotypic trait as defined in Table 1.
bH2, broad-sense heritability (see the Materials and Methods section).
crSorg (SD), average predictive ability and standard deviation across 100 random 10-fold cross-validations based on 53 174 SNVs obtained from alignments
to the Sorghum bicolor genome.
dAccuSorg (SD), average accuracy of genome-wide prediction and standard deviation across 100 random 10-fold cross-validations based on 53 174 SNVs
obtained from alignments to the S. bicolor genome
erMisc (SD), average predictive ability and standard deviation across 100 random 10-fold cross-validations based on 121 771 SNVs obtained from align-
ments to anM. sinensis pseudo-reference.
fAccuMisc (SD), average accuracy of genome-wide prediction and standard deviation across 100 random 10-fold cross-validations based on 121 771 SNVs
obtained from alignments to anM. sinensis pseudo-reference.
gAverage (SD), overall average and standard deviation across traits.
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terms of data quality, this effect may limit the applicability of
RAD-Seq genotyping for the complete dissection of complex
trait architecture because over half of trait-associated

polymorphisms may be located outside of genes (Li et al., 2012).
However, this shortcoming could possibly be mitigated by
using multiple restriction enzymes with varying sensitivities to
methylation.

The patterns of putatively neutral population structure
detected based on RAD-Seq SNVs (Fig. 1) were consistent with
those described previously based on much smaller numbers of
markers (Slavov et al., 2013b). However, the greater power of the
RAD-Seq markers allowed us to detect additional nuances, as
well as to form hypotheses about the geographical origins of over
two-thirds of the genotypes with unknown sampling locations
(Fig. 1). Extensions of this approach to wider germplasm collec-
tions (including otherMiscanthus species) and more sophisticated
models (Baran et al., 2013) will significantly improve our knowl-
edge about the evolutionary history of the genus and will provide
important practical information to breeders.

Despite the small size of our association mapping population
(N = 138), seven associations consistently reached genome-wide
significance across a range of GWAS analyses and adjustments
for multiple testing (Table 3, Figs S4–S7). Interestingly, two of
these associations (i.e. one for AvgeSen.9 and one for Lignin.8;
Table 3), as well as another two putative associations for
StemDiameter.9 and TallestStem.9 (P < 10�5, Fig. S4), all
appeared to align within 8–16Mb of the putative dwarfing locus
dw2, whose location was recently supported by a GWAS for
plant height in S. bicolor (Morris et al., 2013). This region may
therefore require particular attention in future association and
linkage mapping studies.

What is the explanation for the detection of multiple signifi-
cant associations, given the relatively limited statistical power of
our GWASs (Fig. S3)? Because no single unambiguous explana-
tion can be provided, we hypothesize that several factors may
underlie this observation. First, LD in M. sinensis (Fig. S1) does
not appear to be as extensive as in its primarily self-pollinating

(a) (b)

Fig. 4 Performance of genome-wide prediction in a population of 138Miscanthus sinensis genotypes using single-nucleotide variant markers obtained
from alignments to the Sorghum bicolor genome. Predictive ability as a function of training population size (a) and number of markers used (b). All data
points are averages across 100 random cross-validations.

Fig. 5 Effect of population structure on the performance of genome-wide
prediction in a population of 70Miscanthus sinensis genotypes with
known sampling locations using single-nucleotide variants obtained from
alignments to the Sorghum bicolor genome. Cross-validations across
subpopulations (red bars) were performed using genotypes from Japan
(N = 43) as a training population and genotypes from China and South
Korea (N = 27) as a test population. Random cross-validations (gray bars)
were performed by randomly selecting the same numbers of genotypes in
the training and test populations from the total set of 138 genotypes. All
data points are averages, and error bars correspond to standard deviations
across 100 random cross-validations. Only traits with cross-subpopulation
predictive abilities exceeding (1) 0.10 and (2) the standard deviation from
the random cross-validations for the respective trait are shown.
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relative S. bicolor (Morris et al., 2013). However, there was clear
evidence of long-range LD in at least some regions of the
M. sinensis genome (Fig. S1). Thus, although the initial stages of
follow-up studies will focus on the regions in the immediate
vicinity of trait-associated SNVs, it is conceivable that at least
some of these are tagging causative polymorphisms located many
kilobases away. Second, the statistical power to detect associations
of small to moderate effect (PVE ≤ 0.10) was only between 0.001
and 0.213 (Fig. S3). However, if the genomic architectures of the
traits that we studied are highly complex, dozens or even hun-
dreds of causative polymorphisms with minor effects may exist
across the genome. Under this highly polygenic scenario, even an
underpowered study that uses a large number of markers is likely
to detect a subset of minor effect associations and dramatically
overestimate their PVE (Fig. S3). Alternatively, some of the
SNVs detected by our GWASs may be linked to causative poly-
morphisms of larger effects. However, the former scenario seems
to be more plausible based on larger scale GWAS results in other
related crops (Buckler et al., 2009; Morris et al., 2013). Further-
more, the highly polygenic scenario is consistent with the results
from our assessment of marker selection strategies for genome-
wide prediction (Fig. 6), which was performed through cross-val-
idation and should therefore be immune to the inflation of effect
sizes. Finally, it is possible that our analytical procedures failed to
control the rate of false positives. However, our results (i.e. QQ
plots in Figs S4, S5) are generally inconsistent with this explana-
tion.

Although GWAS results are expected to improve in the near
future (i.e. with the use of larger populations and denser genome
coverage), the ability to predict phenotypes from a genome-wide
set of markers is likely to have immediate impact on Miscanthus
breeding programs. Our genome-wide prediction results illustrate
several important points. First, as expected from both theoretical

and empirical studies (Daetwyler et al., 2008, 2010, 2013;
Resende et al., 2012), trait heritability was correlated with predic-
tive ability. However, this correlation was only moderate,
confirming that other factors (e.g. genomic architecture of the
trait, LD, effective population size) may be equally important
(Daetwyler et al., 2010; de Los Campos et al., 2013). For exam-
ple, DryMatter.9 was moderately heritable (H2 = 0.54), yet
genome-wide prediction of this trait consistently failed (Table 4,
Fig. 4). This is not surprising, given the highly composite nature
of biomass yield, and targeting individual yield components or
correlates (e.g. MaxCanopyHeight.9 and StemDiameter.9; Fig. 2)
appears to be a more promising approach (Table 4, Fig. 4). In
contrast, the accuracy of genome-wide prediction for Moisture.9
(H2 = 0.59) nearly reached its theoretical maximum (Table 4),
suggesting that genomic selection for this trait may be feasible
even with very small training populations (i.e. N < 100, Fig. 4a),
with as few as 100–1000 markers (Fig. 4b) and across subpopula-
tions (Fig. 5). Predictive ability was similarly high for phenologi-
cal traits (i.e. DOYFS1.9 and AvgeSen.9), as well as Cellulose.8,
and promising for most other traits (i.e. except DryMatter.9 and
TransectCount.9; Table 4, Fig. 4). We are therefore exploring the
practical application and validation of genomic selection in the
Miscanthus breeding program at the Institute of Biological, Envi-
ronmental and Rural Sciences (IBERS). Second, our results
clearly suggest that substantial further improvements in predic-
tive ability are more likely to come from using larger training
populations (Fig. 4a) than from using denser genome coverage
(Fig. 4b). However, an important caveat is that the SNVs that we
used probably did not cover vast regions of the Miscanthus
genome (Fig. 3). The observed plateau in predictive ability when
10 000–20 000 SNVs were used clearly needs to be validated
using more representative samples of markers. However, based
on our results and currently available genotyping platforms, our

(a) (b)

Fig. 6 Effect of marker selection on the performance of genome-wide prediction of average senescence score (a) and total dry weight (b) in a population of
138Miscanthus sinensis genotypes based on single-nucleotide variants (SNVs) detected from alignments to the Sorghum bicolor genome. ‘Random’
(circles, black line), randomly selected markers; ‘GWAS’ (triangles, red line), markers with the lowest genome-wide association study P values within the
training population; ‘rrBLUP’ (squares, green line), markers with the highest estimated effects within the training population based on ridge regression. All
data points are averages� SD across 100 random cross-validations. Dashed lines correspond to predictive abilities based on all 53 174 SNVs.
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recommended approach to genome-wide prediction in non-
model plants would be to maximize the number of individuals in
the training population and to use a low-cost genotyping strategy
(Davey et al., 2011; Elshire et al., 2011; Poland et al., 2012).
Third, the robustness of genome-wide prediction across subpop-
ulations varied dramatically among traits (Fig. 5). Thus, the rela-
tionship between training and test populations needs to be
characterized in detail, and individuals from the populations tar-
geted by genomic selection (or their close relatives) should ideally
be included in training populations. Finally, our preliminary
assessment of locus selection strategies (Fig. 6) clearly indicated
that there is great potential to increase predictive abilities through
the application of sophisticated analytical approaches (de Los
Campos et al., 2013), which do not attempt to estimate pheno-
typic effects for all loci (i.e. in contrast to the method we used).
The refinement of these approaches and their combination with
multi-locus and multi-trait procedures (Korte et al., 2012; Segura
et al., 2012) offer exciting prospects for the characterization of
pleiotropy and the dissection of highly complex phenotypic traits.
However, studies aimed at pushing the limits of genome-wide
prediction cannot overcome the inherent limitations of this
approach (e.g. trait heritability sets an upper limit on accuracy)
and need to be designed and interpreted with awareness of its
numerous pitfalls (Wray et al., 2013).

In summary, we related high-quality phenotypic data for 17
traits in a population of M. sinensis to SNV markers obtained
through RAD-Seq genotyping. Despite the relatively small size of
our experimental population (N = 138), results from GWASs
were promising and suggest that this approach will be instrumen-
tal for the dissection of complex phenotypic traits. On a more
immediate time-scale, results from our genome-wide prediction
analyses suggest that the application of genomic selection in
Miscanthus may be feasible, and we are therefore validating this
finding in our accelerated breeding program.
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ants detected using restriction site-associated DNA sequencing in
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for 138Miscanthus sinensis genotypes.

New Phytologist (2014) 201: 1227–1239 � 2013 The Authors
New Phytologist � 2013 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist1238



Fig. S3 Statistical power and effect size inflation based on data
perturbation simulations for genome-wide association study
analyses using the EMMAX program.

Fig. S4 Genome-wide association study (GWAS) results for 17
phenotypic traits in a population of 138Miscanthus sinensis geno-
types based on 53 174 markers detected using alignments to the
Sorghum bicolor genome.

Fig. S5 Genome-wide association study (GWAS) results for 17
phenotypic traits in a population of 138Miscanthus sinensis geno-
types based on 121 771 markers detected using alignments to a
M. sinensis pseudo-reference.

Fig. S6 Multi-locus mixed-model (MLMM) genome-wide
association study results for 17 phenotypic traits in a popula-
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