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Abstract

Miscanthus has potential as a bioenergy crop but the rapid development of high-yielding varieties is challenging. 
Previous studies have suggested that phenology and canopy height are important determinants of biomass yield. 
Furthermore, while genome-wide prediction was effective for a broad range of traits, the predictive ability for yield 
was very low. We therefore developed models clarifying the genetic associations between spring emergence, con-
sequent canopy phenology and dry biomass yield. The timing of emergence was a moderately strong predictor of 
early-season elongation growth (genetic correlation >0.5), but less so for growth later in the season and for the 
final yield (genetic correlation <0.1). In contrast, early-season canopy height was consistently more informative than 
emergence for predicting biomass yield across datasets for two species in Miscanthus and two growing seasons. We 
used the associations uncovered through these models to develop selection indices that are expected to increase the 
response to selection for yield by as much as 21% and improve the performance of genome-wide prediction by an 
order of magnitude. This multivariate approach could have an immediate impact in operational breeding programmes, 
as well as enable the integration of crop growth models and genome-wide prediction.

Key words: Bioenergy crops, biomass yield, breeding, canopy phenology, emergence, genomic prediction, genomics, genomic 
selection, Miscanthus, quantitative genetics, selection indices.

Introduction

Miscanthus is a perennial C4 grass that has great potential 
as a bioenergy crop (Visser and Pignatelli, 2001; Hastings et 
al., 2009; Zub and Brancourt-Hulmel, 2010; Somerville et al., 
2010) to be used as part of the strategy for carbon mitiga-
tion and the control of climate change (Clifton-Brown et al., 
2004). Its above-ground biomass can be used both as a source 
of combustible material and as a substrate for liquid fuel 

production and other renewable materials. Miscanthus can 
produce high yields (Beale and Long, 1995; Clifton-Brown et 
al., 2001, 2004) with low agricultural inputs across an exten-
sive geographic range (Clifton-Brown et al., 2007; Hastings 
et al., 2009). In addition, with increasing concerns over food 
security, its ability to grow on marginal land not cultivated for 
food production will take on increasing significance.
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At its simplest the biomass yield of a plant can be consid-
ered the product of the amount of photosynthetically active 
radiation (PAR) it receives over the growing season, the pro-
portion of that radiation it intercepts and the efficiency with 
which it uses the intercepted PAR to create dry matter (radia-
tion use efficiency; RUE; Monteith, 1977). Beale and Long 
(1995) considered several processes that contribute towards 
photosynthetic carbon fixation and concluded that light 
interception had the greatest potential to increase yield in 
perennial C4 grasses. The amount of PAR the plant intercepts 
is intimately related to canopy phenology, both in terms of 
canopy duration from emergence to senescence and in rela-
tion to the area of leaves deployed to intercept the light (leaf 
area index; LAI) over time (Hastings et al., 2009; Davey et al., 
2016). Consistent with this model, Olson et al. (2012) showed 
that the high biomass yield of an energy sorghum hybrid 
was due to its extended period of growth, its high LAI, good 
PAR interception and high RUE. Similarly, Madakadze et al. 
(1998) found that the high biomass yield of cordgrass grow-
ing in a Canadian trial was due to its early spring growth and 
its ability to carry on growing into the autumn, thus maximiz-
ing its light interception over the growing season. However, 
the relative importance of phenology may depend on envi-
ronmental conditions. For example, Zub et al. (2012) sug-
gested from their studies of Miscanthus growing in northern 
France that the emphasis of breeding for increased biomass 
in this crop should be on increased growth rate and not on 
canopy duration, with the best performing genotypes having 
late spring emergence times. In contrast, trials of Miscanthus 
growing at the slightly higher latitudes of Wales (UK) dem-
onstrated the importance of extended canopy duration for 
higher yield, with early emergence being slightly more impor-
tant than extended growth at the end of the season (Robson 
et al., 2013a). Early production of a light-intercepting canopy 
was also found to be important for increasing yield in math-
ematical modelling studies of four Miscanthus genotypes 
grown in Wales (Davey et al., 2016). Finally, the length of 
the vegetative growth phase of a crop and hence its poten-
tial to generate biomass is also controlled by the initiation of 
flowering. Late flowering correlates with increased biomass in 
M. sacchariflorus (Jensen et al., 2013), and selection for late 
flowering was instrumental in the development of energy sor-
ghum varieties (Mullet et al., 2014). Thus, while the interrela-
tions between phenology and biomass yield have not yet been 
studied extensively in C4 grasses (Sarath et al., 2014), they are 
likely to have nuanced genetic and an environmental context.

Miscanthus is an undomesticated crop, and the mecha-
nistic and genetic basis of its biomass yield production are 
still relatively poorly understood (Davey et al., 2016), mak-
ing predictions challenging. This is particularly the case 
for genotypes other than the high yielding commercial 
Miscanthus×giganteus, a natural hybrid of Miscanthus sinen-
sis and Miscanthus sacchariflorus (Greef and Deuter, 1993). 
In broad collections of these two species, canopy height 
appeared to be the best single predictor of biomass at both 
the individual plant (Robson et al., 2013b) and genotype 
levels (Slavov et al., 2014). However, although genome-wide 
prediction (i.e. trait prediction using a genome-wide set of 

molecular markers, also known as genomic selection) was 
effective for a broad range of traits related to phenology, cell 
wall characteristics and biomass productivity (i.e. including 
stem height/diameter/number and canopy height), the predic-
tive ability for biomass yield per se was very low (Slavov et 
al., 2014).

The first objective of this study was to clarify the genetic 
association between spring emergence and consequent 
canopy phenology, as well as determine how these traits 
affect the dry matter yield harvested in the following spring 
(Lewandowski and Heinz, 2003), accounting for the influ-
ence of other morphological and phenological traits. More 
importantly, our second objective was to assess if  exploiting 
these relationships could improve genome-wide prediction 
of biomass yield, as well as to develop pragmatic multivari-
ate approaches that could easily be implemented in breeding 
programmes.

Materials and methods

Phenotypic and molecular marker data
The phenotypic trait data used in this study were obtained from a 
field trial planted in 2005 near Aberystwyth, Wales, UK (52.432, 
−4.019). A detailed description of the trial was given by Allison et 
al. (2011), Jensen et al. (2011) and Robson et al. (2012). Briefly, 244 
Miscanthus genotypes were planted at 1.5 m×1.5 m spacing in a ran-
domized complete block design with four blocks, each containing 
one replicate of each genotype. A subset of 138 M. sinensis geno-
types was defined as a genetically homogeneous population based 
on molecular marker analyses in two previous studies (Slavov et al., 
2013, 2014). In addition, 30 genotypes that had been classified as M. 
sacchariflorus based on molecular markers (Slavov et al., 2013) were 
included for comparison. Plants were phenotyped in 2008 and 2009 
for the traits listed in Table 1 using the methods described by Slavov 
et al. (2013, 2014). In addition, for each plant the highest emergence 
score was recorded on a given day in the spring. The scoring was as 
follows: 0, no emergence; 1, emergence from the soil as new shoots; 
2, small shoots (<10 cm) from over wintered or new growth; 3, elon-
gation of new growth or over wintered bud as a shoot; 4, leaf emer-
gence; and 5, the shoot exceeds 10 cm in length. The dates on which 
genotypes first reached each emergence score were also estimated 
using linear interpolation. All phenological and biomass-related 
traits were measured for both species in both years to allow valid 
cross-comparisons of the data.

We used the molecular marker data generated by Slavov et  al. 
(2014) and available on the NCBI Short Read Archive (SRP062565, 
PRJNA293153). Briefly, single-nucleotide polymorphisms (SNPs) 
were detected and genotyped through restriction site associated 
DNA sequencing (RAD-Seq) using the PstI restriction endonucle-
ase. The 53 174 SNPs used in this study were identified by alignment 
to the Sorghum bicolor v 1.0 genome (Paterson et al., 2009) and then 
filtered based on sequencing depth (≥3 reads per genotype) and per-
centage of missing data (≤20%).

Heritability and genotypic values
For each trait in each year, a linear mixed-effects model (LMEM) of 
the following form was used:

 x b r c g eijkl i j k l ijkl= + + + +  (1)

Where xijkl was the phenotypic value of the lth genotype in the 
kth column of jth row within the ith block and eijkl was the resid-
ual error effect. All terms were treated as random effects, making 
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this approach equivalent to the PRM model of spatial variability 
evaluated by Robbins et al. (2012). The analysis was performed in 
R (R Core Team, 2013) using the lmer function of the lme4 pack-
age (Bates et al., 2015). To assess the need for spatial corrections, 
we also fitted a simplified version of Eqn 1, excluding row and col-
umn effects. Furthermore, we compared the ability of our model to 
account for spatial variability to that of the two-dimensional spline 
(2DS) model, which is believed to be highly robust based on both 
simulated and empirical data (Robbins et al. 2012). The 2DS model 
was fitted using the Tps function of the fields package in R (Nychka 
et al. 2015). Model performance in terms of removing spatial vari-
ability, while minimizing over-fitting (i.e. confounding genetic and 
environmental variance; Robbins et al., 2012), was measured based 
on the resulting estimates of broad-sense heritability:

 H v v v2
g g e= +( )/  (2)

where vg and ve were the estimated genotype and error variance 
components, respectively. Because the model described by Eqn 
1 consistently resulted in higher H2 estimates than those from a 
model without within-block spatial correction and the 2DS model 
(Supplementary Tables S1–S4 at JXB online), best linear unbiased 
predictors (BLUPs) of genotype values from that model were used 
for all subsequent analyses (Supplementary Dataset S1). Likelihood 
profile 95% confidence intervals (CI) for vg and ve were calculated 
where possible using the confint.merMod function within the lme4 
package. In addition, 95% CI for all H2 estimates, as well as for 
vg and ve estimates in M. sacchariflorus (i.e. because the likelihood 
profile approach failed due to the small number of genotypes) were 
obtained based on 100 model-based parametric bootstrap sam-
ples generated using the bootMer function of lme4. If  a trait’s data 
caused a warning message during LMEM analyses and/or had vg 
that was not significant at α=0.05 (i.e. 95% CI included zero), it was 
excluded from subsequent analyses.

Genetic correlations and multiple linear regression of 
biomass yield
We calculated genetic correlations (rg) using several different 
approaches (Slavov et  al., 2014). Because rg values calculated from 
estimates of genetic covariance (see Eqn 6 below and Slavov et al., 
2014) were outside of the expected range (−1, 1) for some of the emer-
gence traits, we present rg approximations calculated as Pearson’s cor-
relation coefficients of the genotypic BLUP values (Supplementary 
Dataset S1). To assess how the genetic correlation between emergence 
time and canopy height changed over the growing season, we set a 

reference date when the mean phenotypic emergence score for each 
species first became ≥2.5 (i.e. trying to maximize the variance of emer-
gence scores, which were in the 0–5 range; Table 1). Further checks 
then ensured that these reference days did not coincide with frost 
events and their selection did not substantially influence our results.

Although several traits were moderately correlated with 
DryMatter (Supplementary Dataset S1; Slavov et al., 2014), none 
appeared to be a strong predictor. We therefore used multiple 
linear regression (MLR) to build biometric models with greater 
explanatory power for this trait, as well as for early season canopy 
height and maximum canopy height (i.e. because canopy height 
was the strongest predictor of  DryMatter in this and previous 
studies: Supplementary Dataset S1; Robson et  al., 2013b; Slavov 
et al., 2014). Separate MLR models were built for M. sinensis and 
M. sacchariflorus in both 2008 and 2009. MLR was performed at 
the genotypic BLUP level and started with an initial list that con-
tained all traits that were measured chronologically before the trait 
being modelled. The R step function used in the forward direc-
tion automatically performed the initial model selection process. 
The resulting model was then manually pruned until the final ver-
sion contained only traits significant at α=0.05. The early season 
canopy heights we chose to model were for day 133 in 2008 and 
day 138 in 2009. These dates were at or after the last emergence 
measurements, when the plants were exhibiting a broad range of 
canopy heights. Traits (usually specific emergence score days) were 
excluded if  vg was not significant or caused warnings in the R sta-
tistical routines used prior to the MLR (see above). For analyses 
aimed at identifying and comparing predictors among species, flow-
ering time (DOYFS1) was excluded from all MLR analyses because 
most M. sacchariflorus genotypes did not flower in 2008 and 2009. 
However, we did include this trait in model selection procedures 
aimed at developing selection indices for M. sinensis as roughly 90% 
of the genotypes for that species flowered in both years.

Genome-wide prediction
For genome-wide analyses and presentation, we followed the meth-
odology described by Slavov et  al. (2014). Briefly, we used the R 
package rrBLUP (Endelman, 2011) and random ten-fold cross-val-
idations, with 100 iterations per trait, implemented in the R-script 
available at github.com/ChrisDaveyCymru/ds-gs. Predictive abili-
ties were calculated as Pearson correlation coefficients between the 
‘observed’ BLUPs and the values predicted by rrBLUP. Because 
RAD-Seq data were only available for the 138 M. sinensis genotypes, 
all analyses described in this and the following sections were only 
performed for this species.

Table 1. Phenotypic traits measured in 2008 and 2009 in two species of Miscanthus.

Trait (units) Description

BaseDiameter (mm)a Ground level diameter of widest part of plant base
TransectCount (count)a Number of stems across the middle of the plant reaching ≥50% of the canopy height
StemDiameter (mm)a Diameter at 10–15 cm from the base of a randomly selected stem
TallestStem (cm)a Length of the tallest stem, from the base to the uppermost ligule
MaxCanopyHght (cm)a Maximum of canopy height values over the growing season (see below)
DOYFS1 (Julian day)a Day of year when the first flag leaf emerged
AvgeSen (numeric score, range=0–10)a Average score of senescence over the growing season
Moisture (%)a Moisture content based on the weight difference between wet and dry subsamples
DryMatter (g)a Dry biomass yield for the whole plant estimated from wet and dry subsamples
ES.DOY (numeric score, range=0–5) Emergence score (see ‘Materials and methods’) on a given day of the year (e.g. ES.119 is the 

emergence score on day 119)
ESstageDOY (Julian day) Day of the year when a given emergence score was reached
CanHght.DOY (cm) The canopy height on a given day of the year, measured from the ground to the inflection point of 

most of the leaves at the plant’s top

a Detailed description of this trait and the protocol for its measurement was provided by Slavov et al. (2013).
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Selection indices integrated with genome-wide prediction
Results from this and a previous study (Slavov et  al., 2014) indi-
cated that genome-wide prediction for biomass yield was largely 
ineffective. We therefore attempted to improve predictive ability by 
using the genetic correlations between biomass yield and other mor-
phological traits that are related to this highly composite trait. To 
achieve this, we first constructed selection indices for yield and its 
best predictors (i.e. based on our MLR analyses described above) 
and then performed genome-wide prediction on these selection indi-
ces (Mackay et al., 2015).

A selection index consists of two components (Falconer, 1989; 
Cameron, 1997): the selection objective (SO) and the selection index 
(SI). The SO contains all the traits to be selected for simultaneously 
when selection is based on the value of the SI. Thus, the SO can be 
viewed as a composite trait to be selected for. The SO has the form:

 SO 1 1 2 2= + + …+a y a y a yn n (3)

where y1 is the first trait, y2 the second and so on to final trait yn, 
whilst a1, a2, … an are the economic values associated with a unit 
improvement in the respective traits.

The SI contains the traits that are measured and these can be dif-
ferent from the traits in the SO. The calculated value of the SI for an 
individual is a prediction of its genetic merit for the SO. Thus, selec-
tion of individuals for breeding based on their SI scores will improve 
the SO and hence all the traits it contains to an extent weighted by 
the economic values a1, a2, … an. The SI has the form:

 SI 1 1 2 2= + + …+w x w x w xm m (4)

where the x terms are the traits measured on an individual (m traits 
in total), whereas w1, w2, …, wm are calculated so that selection on 
the SI maximizes the response in the SO. The w values are found by 
solving:

 P  Gw a=  (5)

where a is a vector of the a1, a2, … an economic values in Eqn 3, w 
is a vector of the w1, w2, …, wm values in Eqn 4, P is the variance–
covariance matrix for the phenotypic values of the traits in the SI, 
and G is the (additive) genetic covariance matrix for the traits in the 
SI and the SO. Thus, G provides the genetic level link between the 
SI and SO.

Two caveats need to be acknowledged here. Firstly, in all our anal-
yses, we used the same traits in the SO and SI, and the matrix G 
in Eqn 5 was therefore a variance–covariance matrix. However, G 
contained the total genetic variances and covariances because our 
design (i.e. clonal genotype replicates) did not allow their decom-
position into additive and non-additive components. Secondly, the 
a1, a2, … an terms in the SO (Eqn 3) were all set to 0, except for that 
for biomass yield, which was set to 1. Thus, the SO was in practice 
biomass yield alone, while other traits were only included to improve 
the predictive ability and response to selection for yield through 
their genetic correlations with this trait.

For each pair of traits (subscripts 1 and 2) in the P and G matri-
ces, LMEMs were used to estimate their respective genetic (vg1 and 
vg2) and residual error variances (ve1 and ve2). Using the properties 
of linear functions of random variables (Wackerly et al., 2002), the 
LMEM described in Eqn 1 was then fitted on the sum of the two 
traits and their genetic covariance (covg12) was calculated as:

 cov  2g12 gs g1 g2= ( )v v v– – /  (6)

where vgs was the genetic variance of the sum of the two traits 
(Howe et al., 2000). Residual error variances and covariances were 
estimated using the same approach, and then the G and P matri-
ces were populated with the appropriate terms (i.e. with phenotypic 
(co-) variances expressed as the sums of the respective genetic and 
residual error (co-) variances).

After solving Eqn 5 for the w1, w2, …, wm terms, the SI value for 
each individual plant was calculated using Eqn 4, and the resulting 
SI values were treated as phenotypic traits to calculate H2, extract 
genotypic BLUPs and perform genome-wide prediction (see above). 
Following Falconer (1989), the relative response to selection Rrel was 
then calculated as:

 R v H vrel SI g= ( )/ 2  (7)

where H2 and vg were the broad-sense heritability and genetic vari-
ance for dry matter yield, whereas vSI was the variance of the SI, 
which was calculated as:

 v w v w w wm mSI 1 g1 2 g12 3 g13 g1cov cov cov= + + …+  (8)

Trait 1 was always dry matter yield, and all covariance terms were 
therefore between the additional traits in the SI and yield.

A schematic diagram of the custom R-scripts used to perform all 
analyses in this section is shown in Supplementary Fig. S1 and the 
R-script used to calculate the selection indices is available at github.
com/ChrisDaveyCymru/ds-si. The traits considered for the SIs were 
identified by our MLR models (see above), although we also con-
sidered more parsimonious (and therefore less demanding in terms 
of additional phenotyping) SIs, including only core subsets of the 
significant yield predictors.

Results and discussion

Genetic determination and relationship between 
emergence, canopy height and yield

Most of the phenotypic traits that we studied had a moder-
ate to strong degree of genetic determination (Table  2 and 
Supplementary Tables S1–S4). As expected, broad sense 
heritabilities (H2) for biomass-related morphological traits 
(i.e. BaseDiameter, TransectCount, StemDiameter and 
MaxCanopyHght) increased slightly as the crop matured 
from 2008 to 2009, but this was not the case for biomass 
yield (DryMatter). Heritabilities for emergence score were 
time dependent, with a clear peak that tended to be in the 
range 0.51–0.54 for both M.  sinensis and M.  sacchariflo-
rus (Supplementary Tables S1–S4), although the value for 
M.  sinensis in 2008 was slightly smaller at 0.39 (Fig.  1A, 
Supplementary Table S1). The peaks occurred between days 
82 and 96 for both species across both years and corresponded 
to emergence score 3–4 (shoot elongation to leaf emergence) 
in M. sinensis and score 1 (initial bud/shoot emergence from 
the soil) in M.  sacchariflorus. In contrast, the H2 values for 
canopy height rapidly increased to a plateau value (Fig. 1B). 
For M. sinensis this plateau value was about 0.70 in both years 
(Fig. 1B, Supplementary Tables S1 and S2), while for M. sac-
chariflorus the value was substantially higher at 0.91–0.93 
(Supplementary Tables S3 and S4). Thus, the relative degree of 
genetic determination of both emergence and canopy height 
is dynamic, and care should be taken when selecting dates for 
measuring these traits. It is encouraging, however, that the 
optimal time for capturing emergence data was consistently 
within a relatively narrow 2-week window as this allows phe-
notyping activities to be planned with precision.

To characterize the variability of genetic correlations 
between emergence and canopy heights during the grow-
ing season, the emergence score on a reference day early in 
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the growing season was selected as described in ‘Materials 
and methods’. For both M.  sinensis and M.  sacchariflorus 
in 2008 the reference day was day 91 (31 March). In 2009, 
the reference day for M. sinensis was 82 (23 March) and for 
M. sacchariflorus 96 (6 April), reflecting the differing weather, 
growth and measurement days in the two years. Early-season 
canopy heights were moderately correlated with emergence, 
but these correlations rapidly declined in both 2008 (Fig. 1B) 
and 2009 (Supplementary Dataset S1). This suggested that 
early-season growth rate may be a more important determi-
nant of canopy height, and ultimately biomass yield, than the 
starting date per se (Supplementary Dataset S1). Consistent 
with this result, the importance of the early-season growth 
rate for yield production in Miscanthus was also suggested by 
Farrell et al. (2006).

The weak genetic association between emergence and 
yield (Supplementary Dataset S1), presumably mediated by 
the transient genetic correlation of emergence with canopy 
height, indicated that yield could not be reliably predicted 
solely based on spring phenology. We therefore used MLR 
models to identify the key predictors of biomass yield and 
clarify the relative importance of spring events (Table  3, 
Supplementary Table S5). Emergence was an important pre-
dictor of early-season canopy height in both M. sinensis and 
M. sacchariflorus. In addition, plant basal diameter was a key 
predictor for the former species and stem diameter for the 
latter. As expected, maximum canopy height was more com-
plex, with emergence being an important predictor in M. sin-
ensis and to a lesser extent in M. sacchariflorus, while stem 
diameter was a significant predictor in both species. Finally, 
the MLR models of dry biomass yield indicated that canopy 
height (both early and later in the growing season) and stem 
number (i.e. TransectCount) were by far the most robust pre-
dictors. In M. sinensis, senescence and to a lesser extent emer-
gence were also significant predictors, whereas neither was 

significant in M.  sacchariflorus. Overall, our MLR models 
confirmed indications from the genetic correlation analyses 
that (i) the timing of emergence was a significant predictor of 
early-season elongation growth, but less so for growth later 
in the season and for the final dry biomass yield; (ii) early-
season canopy height was consistently more informative 
than emergence for predicting biomass yield; and (iii) there 
were substantial species differences with respect to the rela-
tive importance of phenological and morphometric traits as 
determinants of biomass yield.

Genome-wide prediction

Thus far it has been established that canopy phenology and, 
to a lesser extent, emergence are important determinants of 
biomass yield and that all of these traits are heritable. Our 
next step was to build on this by exploiting a genome-wide 
SNP set for the M. sinensis genotypes used here in order to 
study these traits at the genomic level. Firstly, exploratory 
genome-wide association study (GWAS) analyses identified a 
large number of SNPs, with relatively small individual effects, 
associated with emergence after Bonferroni adjustments (data 
not shown), but these results will be reported separately, after 
re-analyses in larger GWAS populations (n=1000 genotypes).

Secondly, we performed genome-wide prediction to 
explore the practical value of our research to plant breeders. 
As expected from our previous study (Slavov et  al., 2014), 
genome-wide predictive abilities based on random cross-
validations ranged from moderate to high for most traits 
(Table 4), reaching as high as 0.76 for the traits Moisture and 
DOYFS1 (see Table 1). However, the predictive ability for dry 
biomass yield was close to zero. This was not surprising since 
yield depends so strongly on the cumulative interactions of 
many sub-traits with the environment over the whole grow-
ing season. Also, the plants were harvested in the late winter, 

Table 2. Broad sense heritabilities (H2) for 138 M. sinensis (sin) and 30 M. sacchariflorus (sac) genotypes in 2008 (.08) and 2009 
(.09). Traits are described in Table 1. Heritabilities for emergence score and canopy heights over time, as well as variance component 
estimates and comparisons of different spatial correction models, are shown in Supplementary Tables S1–S4. Model-based parametric 
bootstrap 95% confidence intervals (95% CI) are shown in brackets (see ‘Materials and methods’).

Trait name H2 sin.08 (95% CI) H2 sin.09 (95% CI) H2 sac.08 (95% CI) H2 sac.09 (95% CI)

BaseDiameter 0.358 (0.270, 0.480) 0.522 (0.431, 0.616) 0.330 (0.109, 0.534) 0.451 (0.242, 0.732)
TransectCount 0.490 (0.380, 0.581) 0.528 (0.453, 0.622) 0.556 (0.367, 0.773) 0.746 (0.646, 0.940)
StemDiameter 0.477 (0.380, 0.573) 0.619 (0.547, 0.698) 0.710 (0.601, 0.857) 0.885 (0.835, 0.980)
TallestStem 0.849 (0.816, 0.886) 0.883 (0.856, 0.915) 0.852 (0.794, 0.959) 0.704 (0.582, 0.907)
MaxCanopyHght 0.685 (0.630, 0.747) 0.799 (0.760, 0.862) 0.909 (0.860, 1.004) 0.924 (0.889, 0.991)
DOYFS1 0.943 (0.928, 0.960) 0.890 (0.858, 0.926) 0.749 (0.498, 1.155)a 0.959 (0.917, 1.058)
AvgeSen 0.901 (0.878, 0.926) 0.832 (0.794, 0.887) 0.916 (0.876, 0.965) 0.884 (0.830, 0.968)
Moisture 0.871 (0.833, 0.904) 0.805 (0.761, 0.855) 0.205 (0.000, 0.411)a 0.619 (0.461, 0.884)
DryMatter 0.587 (0.519, 0.674) 0.571 (0.482, 0.653) 0.679 (0.532, 0.868) 0.680 (0.531, 0.869)
ES1DOY 0.042 (-0.038, 0.084)a 0.228 (0.133, 0.319) 0.606 (0.442, 0.794) 0.432 (0.274, 0.635)
ES2DOY 0.042 (-0.028, 0.084)a 0.228 (0.134, 0.324) 0.460 (0.261, 0.695) 0.230 (0.016, 0.400)
ES3DOY 0.478 (0.392, 0.569) 0.416 (0.331, 0.517) 0.450 (0.223, 0.683) 0.235 (0.014, 0.464)
ES4DOY 0.373 (0.288, 0.465) 0.521 (0.449, 0.619) 0.443 (0.261, 0.732) 0.432 (0.253, 0.690)
ES5DOY 0.359 (0.263, 0.475) 0.404 (0.327, 0.500) 0.446 (0.265, 0.679) 0.005 (-0.188, 0.011)a

a Genetic variance not significant or generated an R warning when used in a relevant statistical function.
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which means that the yield values also reflected the stochas-
tic losses of stem material in winter storms. For emergence 
score and canopy height, data were available through multi-
ple time points. For these traits, it was therefore possible to 
look at the time dependence of predictive ability, which in 
both cases had peaks that were highly repeatable across the 
two years (Fig. 2). As expected, the peak of predictive abil-
ity for emergence score roughly corresponded to the peak in 
H2. In 2008 the peak predictive ability for canopy height was 
on day 148 and in 2009 on day 152, but in both cases the 

equivalent median canopy height was 65 cm. Thus, we have 
identified both the optimal time and developmental stage for 
collecting spring phenology data under the conditions of our 
field trial, thereby substantially reducing the time and cost of 
future measurements.

Selection indices integrated with genome-wide 
prediction

One general approach to improving genome-wide predic-
tions of biomass yield is to exploit its genetic correlations 
with other traits that have higher H2 and/or predictive abili-
ties (Fig.  3). More specifically, we implemented a variation 
of the idea suggested by Mackay et al. (2015), by first build-
ing selection indices (SIs), with biomass yield being the only 
selection objective (see ‘Materials and methods’), and then 
performing genome-wide prediction on these SIs. Using the 
relative response to selection (i.e. compared with direct selec-
tion on yield) and genome-wide predictive ability of each 
SI as benchmarks, we evaluated several different scenarios, 
using the key predictor traits for yield identified by our MLR 
models (see above, Table 3 and Supplementary Table S5) and 
exploring scenarios aimed at minimizing phenotyping effort 
(Table 5).

Several generalizations emerged from these analyses. 
Firstly, as expected from our correlation and MLR analyses, 
SIs based exclusively on spring phenology traits (i.e. emer-
gence and early elongation growth) did not result in practi-
cally significant improvements in the relative response to 
selection or genome-wide predictive ability (Table 5, indices 
1a and 1b). In contrast, SIs that included both spring and fall 
events had consistently higher relative responses to selection 
(i.e. by 1–15%) and increased genome-wide predictive abil-
ity by an order of magnitude (Table 5, indices 1c–1e). Most 
notably, a very parsimonious SI, including flowering time 
alone (Table 5, index 1c), was nearly as effective as the best SI 
we identified using MLR (Table 5, index 3b). Thus, although 
measurements of flowering time require multiple field surveys 
over extended periods of time (Jensen et al., 2011), capturing 
even a crude measure of flowering phenology using a high-
throughput phenotyping platform may enable the implemen-
tation of this SI. Alternatively, SIs including measures of 
both emergence and senescence (i.e. canopy duration, Table 5, 
index 1e) may be feasible, as these traits could be captured in 
single, well-chosen time points (see above) or via automated 
imaging. Secondly, SIs based exclusively on morphometri-
cal traits (Table 5, indices 2a–2e) performed less consistently 
and generally worse than phenological SIs. Interestingly, the 
genome-wide predictive abilities for all five morphometrical 
SIs improved considerably (i.e. by ~1–5 standard deviations) 
from 2008 to 2009, suggesting that these SIs may be more 
effective once crop maturity is reached. Finally, a ‘full model’ 
SI, which included both phenological and morphometrical 
traits that were identified as significant predictors of yield in 
our MLR analyses, resulted in 16% higher relative response 
to selection and six-fold increase in genome-wide predictive 
ability in 2009, with even better performance in 2008 (Table 
5, index 3b). The considerable phenotyping effort required for 

Fig. 1. Variance components and broad sense heritabilities (H2) for 
emergence score (A) and canopy height (B) versus day in the year for 
M. sinensis in 2008, and genetic correlation (rg) of canopy height with 
emergence score on day 91 (B). The peak in error variance on day 119 
in (A) was due to a frost event. Error bars correspond to 95% confidence 
intervals (see ‘Materials and methods’).
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this SI will probably make it impractical in most situations, 
although this may not be the case if  the use of automated 
high-throughput phenotyping platforms becomes common in 
breeding programmes. More importantly, a ‘reduced model’ 
SI, which included only flowering time and stem number, 
resulted in a similar level of improvement (Table 5, index 
3a), suggesting that simplified SIs (e.g. Table 5 indices 1c–1e, 
2b and 3a) could readily be implemented in most breeding 
programmes.

Implications

The findings of  this study, and particularly the results of 
combining SIs and genome-wide prediction, have several 
important practical implications for breeding Miscanthus 
and other perennial biomass crops. Firstly, the length of  time 

needed for the plants to mature enough to evaluate their merit 
for selection as parents is probably the biggest limiting factor 
for accelerating the domestication of  Miscanthus. Genomic 
selection is therefore likely to play a particularly important 
role in shortening breeding cycles. Although genome-wide 
prediction of  biomass yield was ineffective in M. sinensis 
(Slavov et al., 2014), the addition of  even a single pheno-
typic trait (e.g. flowering time, senescence or stem number) 
in our simplest SI scenarios led to several-fold increases in 
predictive ability, with the added benefit of  slightly increased 
response to selection (Table 5). Thus, the challenge of  using 
genomic selection to increase biomass yield can be overcome 
with very modest additional phenotyping effort (i.e. through 

Table 3. Generalized summary of the multiple linear regression models for early season canopy heights (CanHght.133 in 2008 
and CanHght.138 in 2009), max canopy heights (MaxCanopyHght) and dry matter yield (DryMatter) for M. sinensis (sin) and 
M. sacchariflorus (sac) in 2008 (08) and 2009 (09). The traits in the final models have been grouped under over-arching headings to 
emphasize the trends. The actual traits in the models are listed in Supplementary Table S5.

Trait Species
(year)

Adjusted
R2

Emergence Senescence
(moisture)

Base 
diameter  
of plant

Transect 
count

Stem 
diameter

Canopy 
height at 
≤180 day  
of year

Canopy 
height at 
>180 day  
of year

Tallest 
stem, max 
canopy 
height

Early canopy 
height

Sin (08) 0.39 ✓ ✓ ✓
Sin (09) 0.30 ✓ ✓
Sac (08) 0.76 ✓ ✓
Sac (09) 0.64 ✓ ✓

Max canopy 
height

Sin (08) 0.34 ✓ ✓
Sin (09) 0.44 ✓ ✓ ✓ ✓
Sac (08) 0.90 ✓ ✓
Sac (09) 0.87 ✓

Dry matter 
yield

Sin (08) 0.76 ✓ ✓ ✓ ✓ ✓
Sin (09) 0.71 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sac (08) 0.86 ✓ ✓ ✓
Sac (09) 0.79 ✓ ✓ ✓ ✓

Table 4. Genome-wide predictive abilities for M. sinensis in 2008 
and 2009.

Trait Mean (SD) predictive ability

2008 2009

BaseDiameter 0.30 (0.04) 0.28 (0.05)
TransectCount 0.27 (0.03) 0.16 (0.04)
StemDiameter 0.43 (0.04) 0.51 (0.03)
TallestStem 0.64 (0.01) 0.65 (0.01)
MaxCanopyHght 0.16 (0.04) 0.37 (0.02)
DOYFS1 0.73 (0.02) 0.76 (0.02)
AvgeSen 0.64 (0.01) 0.64 (0.01)
Moisture 0.74 (0.01) 0.76 (0.01)
DryMatter 0.01 (0.05) 0.06 (0.05)
ES1DOY — −0.13 (0.10)
ES2DOY — −0.13 (0.10)
ES3DOY 0.49 (0.02) −0.08 (0.02)
ES4DOY 0.43 (0.03) 0.41 (0.03)
ES5DOY 0.25 (0.05) 0.32 (0.06)

Fig. 2. Genome-wide prediction of emergence score and canopy height 
versus day of year for M. sinensis in 2008 and 2009.
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a single field survey). It is currently unclear, however, if  it is 
feasible to implement this approach in ongoing breeding pro-
grammes. This is because genome-wide prediction has not 

yet been evaluated across multiple generations and in inter-
specific hybrids (i.e. the most likely market products). Both 
of  these uncertainties are being assessed in an ongoing study 
using larger Miscanthus populations (n=1000 genotypes), 
including all widely distributed species and a set of  highly 
productive inter-specific hybrids. Secondly, early breeding 
efforts in Miscanthus have focused exclusively on increasing 
biomass yield, but other traits, such as seed-based propaga-
tion to reduce establishment cost (or its absence to reduce 
invasiveness), abiotic stress resistance and biomass composi-
tion are likely to become increasingly important in the future 
(Clifton-Brown et al., 2017). For example, selection indices 
have already been used to simultaneously improve biomass 
yield and quality in switchgrass (Jahufer and Casler, 2015). 
Thus, our approach of  combining genome-wide prediction 
and SIs would be a natural choice for accelerated breeding 
programmes that target multiple traits. Finally, at a more 
fundamental level, the integration of  SIs and genomic selec-
tion can also be used to predict key parameters used in 
mathematical models of  plant growth and yield (e.g. Davey 
et al., 2016), and so provide a direct link between genetics 
and physiological process-based modelling (Yin and Struik, 
2016). Recent studies have demonstrated the potential of 
integrating crop growth models with genomic selection, par-
ticularly for prediction in the presence of  strong genotype-
by-environment interactions (Technow et al., 2015; Cooper 

Fig. 3. Conceptual model of the ‘Total stem volume’ selection index for 
dry matter yield using the data for M. sinensis in 2009 (Table 5, index 2d). 
The yield of a Miscanthus plant is approximated as the total stem volume 
using the three additional traits in the figure.

Table 5. Component traits, broad-sense heritabilities (H2), relative responses (Rrel) and genome-wide predictive abilities of selection 
indices aimed at increasing gains of biomass yield (DryMatter) of M. sinensis in 2008 and 2009.

Type/name of index Traits included in addition to DryMatter Year Rrel H2 Predictive ability (SD)

1.Phenological
1a. Emergence ES4DOY 2008 1.00 0.59 0.04 (0.06)

ES4DOY 2009 1.02 0.56 0.07 (0.05)
1b. Early growth CanHght.158 2008 1.00 0.59 0.04 (0.06)

CanHght.161 2009 1.00 0.57 0.07 (0.06)
1c. Flowering DOYFS1 2008 1.15 0.74 0.41 (0.02)

DOYFS1 2009 1.06 0.66 0.32 (0.03)
1d. Senescence AvgeSen 2008 1.03 0.67 0.34 (0.04)

AvgeSen 2009 1.01 0.60 0.21 (0.05)
1e. Canopy duration ES4DOY, AvgeSen 2008 1.03 0.67 0.34 (0.04)

ES4DOY, AvgeSen 2009 1.03 0.59 0.19 (0.05)
2.Morphometrical
2a. Stem diameter StemDiameter 2008 0.89 0.53 −0.10 (0.06)

StemDiameter 2009 1.02 0.62 0.23 (0.05)
2b. Stem number TransectCount 2008 1.01 0.62 0.17 (0.05)

TransectCount 2009 1.01 0.60 0.21 (0.05)
2c. Total stem diameter TransectCount, StemDiameter 2008 0.98 0.59 0.13 (0.05)

TransectCount, StemDiameter 2009 1.03 0.63 0.25 (0.05)
2d. Total stem volume TransectCount, StemDiameter, MaxCanopyHght 2008 1.00 0.60 0.18 (0.05)

TransectCount, StemDiameter, MaxCanopyHght 2009 1.03 0.64 0.25 (0.05)
2e. Plant volume StemDiameter, TallestStem, BaseDiameter 2008 0.97 0.57 0.13 (0.05)

StemDiameter, TallestStem, BaseDiameter 2009 0.89 0.48 0.36 (0.02)
3.Combined (MLR)
3a. Reduced DOYFS1, TransectCount 2008 1.16 0.75 0.42 (0.02)

DOYFS1, TransectCount 2009 1.07 0.68 0.36 (0.03)
3b. Full ES4DOY, CanHght.176, DOYFS1, AvgeSen, TransectCount, StemDiameter, 

TallestStem, BaseDiameter
2008 1.21 0.79 0.45 (0.02)

ES4DOY, CanHght.180, DOYFS1, AvgeSen, TransectCount, StemDiameter, 
TallestStem, BaseDiameter

2009 1.16 0.69 0.36 (0.03)
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et al., 2016; Messina et al., 2017). The critical factor for the 
accuracy of  these models, however, appears to be the availa-
bility of  training data sets from multiple contrasting environ-
ments (Messina et al., 2017). Our SI-based approach could 
readily be applied to predict the physiological parameters 
underlying crop growth models from more easily measurable 
phenotypic traits (i.e. potentially including traits captured 
through high-throughut phenotyping platforms). It could 
therefore play an important role in the development of  a 
highly integrated analytical framework, which would enable 
large-scale virtual breeding and testing experiments, thereby 
transforming the efficiency of  plant breeding (Messina et al., 
2017).

Supplementary data

Supplementary data are available at JXB online.
Dataset S1. Heat maps of the phenotypic and genetic cor-

relations for the traits in Table 1, as well as tables of the trait 
BLUPs for M. sinensis and M. sacchariflorus in 2008 and 
2009.

Fig. S1. Flowchart of the data analysis for the selection 
index calculations and subsequent genome-wide prediction.

Table S1. Broad sense heritabilities of all traits measured in 
M. sinensis during 2008.

Table S2. Broad sense heritabilities of all traits measured in 
M. sinensis during 2009.

Table S3. Broad sense heritabilities of all traits measured in 
M. sacchariflorus during 2008.

Table S4. Broad sense heritabilities of all traits measured in 
M. sacchariflorus during 2009.

Table S5. Individual traits selected in the multiple linear 
regression models shown as generalized summaries in Table 3.
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