21 research outputs found

    Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument

    Get PDF
    We give a description of the design, construction and testing of the 30 and 44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the Planck mission to be launched in 2009. The scientific requirements of the mission determine the performance parameters to be met by the FEMs, including their linear polarization characteristics. The FEM design is that of a differential pseudo-correlation radiometer in which the signal from the sky is compared with a 4-K blackbody load. The Low Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel phase-switch design which gives excellent amplitude and phase match across the band. The noise temperature requirements are met within the measurement errors at the two frequencies. For the most sensitive LNAs, the noise temperature at the band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively. For some of the FEMs, the noise temperature is still falling as the ambient temperature is reduced to 20 K. Stability tests of the FEMs, including a measurement of the 1/f knee frequency, also meet mission requirements. The 30 and 44 GHz FEMs have met or bettered the mission requirements in all critical aspects. The most sensitive LNAs have reached new limits of noise temperature for HEMTs at their band centres. The FEMs have well-defined linear polarization characteristcs.Comment: 39 pages, 33 figures (33 EPS files), 12 tables. Planck LFI technical papers published by JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022

    Planck pre-launch status: calibration of the Low Frequency Instrument flight model radiometers

    Get PDF
    The Low Frequency Instrument (LFI) on-board the ESA Planck satellite carries eleven radiometer subsystems, called Radiometer Chain Assemblies (RCAs), each composed of a pair of pseudo-correlation receivers. We describe the on-ground calibration campaign performed to qualify the flight model RCAs and to measure their pre-launch performances. Each RCA was calibrated in a dedicated flight-like cryogenic environment with the radiometer front-end cooled to 20K and the back-end at 300K, and with an external input load cooled to 4K. A matched load simulating a blackbody at different temperatures was placed in front of the sky horn to derive basic radiometer properties such as noise temperature, gain, and noise performance, e.g. 1/f noise. The spectral response of each detector was measured as was their susceptibility to thermal variation. All eleven LFI RCAs were calibrated. Instrumental parameters measured in these tests, such as noise temperature, bandwidth, radiometer isolation, and linearity, provide essential inputs to the Planck-LFI data analysis.Comment: 15 pages, 18 figures. Accepted for publication in Astronomy and Astrophysic

    An adaptive drift-diffusion model of interval timing dynamics

    No full text
    Animals readily learn the timing between salient events. They can even adapt their timed responding to rapidly changing intervals, sometimes as quickly as a single trial. Recently, drift-diffusion models—widely used to model response times in decision making—have been extended with new learning rules that allow them to accommodate steady-state interval timing, including scalar timing and timescale invariance. These time-adaptive drift-diffusion models (TDDMs) work by accumulating evidence of elapsing time through their drift rate, thereby encoding the to-be-timed interval. One outstanding challenge for these models lies in the dynamics of interval timing—when the to-be-timed intervals are non-stationary. On these schedules, animals often fail to exhibit strict timescale invariance, as expected by the TDDMs and most other timing models. Here, we introduce a simple extension to these TDDMs, where the response threshold is a linear function of the observed event rate. This new model compares favorably against the basic TDDMs and the multiple-time-scale (MTS) habituation model when evaluated against three published datasets on timing dynamics in pigeons. Our results suggest that the threshold for triggering responding in interval timing changes as a function of recent intervals

    Mechanism for basic hydrolysis of N-nitrosoguanidines in aqueous solution

    No full text
    A kinetic study was carried out on the hydrolysis of two N-nitrosoguanidines, 1-nitroso-1-methyl- 3-tolylsulfonylguanidine (TSGNO) and 1-nitroso-1-methyl-3-benzoylguanidine (BCGNO). We observed an absence of buffer catalysis using H2PO4 -/HPO4 2-, H3BO3/H2BO3 -, and HCO3 -/CO3 2- regulators and a complex dependency of the rate constant on the pH. We discovered the existence of three simultaneous reaction paths: spontaneous decomposition of the neutral form of the N-nitrosoguanidine, decomposition of the monoanion, and decomposition through the form of the dianion. The analysis of the kinetic data has allowed us to obtain the acidity constant for the formation of the monoanion of the N-nitrosoguanidine, with values of pKa I ) 11.5. The reaction rate for the process through the monoanion, k2, decreases as the acidity increases. The application of the principle of nonperfect synchronization shows that the basicity and reactivity do not correlate when there exists a possibility of stabilization of the negative charge by resonance. This behavior is consistent with the mechanism E1cB whereby the stabler the negative charge, the slower the elimination reaction. When dealing with the case of the elimination through the neutral form we observe that the reaction rate increases together with the capacity of stabilization of the positive charge on the nitrogen atom adjacent to the imino group. For the reaction through the dianion we used a maximum value of k3 ) 1010 s-1 to estimate the value of pKa II for the formation of the dianion of the N-nitrosoguanidine, obtaining values of pKa II < 24
    corecore