78 research outputs found

    Multi-trait genome-wide association study of opioid addiction: OPRM1 and beyond

    Get PDF
    Opioid addiction (OA) is moderately heritable, yet only rs1799971, the A118G variant in OPRM1, has been identified as a genome-wide significant association with OA and independently replicated. We applied genomic structural equation modeling to conduct a GWAS of the new Genetics of Opioid Addiction Consortium (GENOA) data together with published studies (Psychiatric Genomics Consortium, Million Veteran Program, and Partners Health), comprising 23,367 cases and effective sample size of 88,114 individuals of European ancestry. Genetic correlations among the various OA phenotypes were uniformly high (

    Living on the edge: precariousness and why it matters for health

    Get PDF
    The post-war period in Europe, between the late 1940s and the 1970s, was characterised by an expansion of the role of by the state, protecting its citizens from risks of unemployment, poverty, homelessness, and food insecurity. This security began to erode in the 1980s as a result of privatisation and deregulation. The withdrawal of the state further accelerated after the 2008 financial crisis, as countries began pursuing deep austerity. The result has been a rise in what has been termed ‘precariousness’. Here we review the development of the concept of precariousness and related phenomena of vulnerability and resilience, before reviewing evidence of growing precariousness in European countries. It describes a series of studies of the impact on precariousness on health in domains of employment, housing, and food, as well as natural experiments of policies that either alleviate or worsen these impacts. It concludes with a warning, drawn from the history of the 1930s, of the political consequences of increasing precariousness in Europe and North America

    Historical Research Approaches to the Analysis of Internationalisation

    Get PDF
    Historical research methods and approaches can improve understanding of the most appropriate techniques to confront data and test theories in internationalisation research. A critical analysis of all “texts” (sources), time series analyses, comparative methods across time periods and space, counterfactual analysis and the examination of outliers are shown to have the potential to improve research practices. Examples and applications are shown in these key areas of research with special reference to internationalisation processes. Examination of these methods allows us to see internationalisation processes as a sequenced set of decisions in time and space, path dependent to some extent but subject to managerial discretion. Internationalisation process research can benefit from the use of historical research methods in analysis of sources, production of time-lines, using comparative evidence across time and space and in the examination of feasible alternative choices

    Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease

    Get PDF
    Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine—choline, trimethylamine N-oxide (TMAO) and betaine—were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease

    Genome-wide association study across European and African American ancestries identifies a SNP in DNMT3B contributing to nicotine dependence

    Get PDF
    Cigarette smoking is a leading cause of preventable mortality worldwide. Nicotine dependence, which reduces the likelihood of quitting smoking, is a heritable trait with firmly established associations with sequence variants in nicotine acetylcholine receptor genes and at other loci. To search for additional loci, we conducted a genome-wide association study (GWAS) meta-analysis of nicotine dependence, totaling 38,602 smokers (28,677 Europeans/European Americans and 9925 African Americans) across 15 studies. In this largest-ever GWAS meta-analysis for nicotine dependence and the largest-ever cross-ancestry GWAS meta-analysis for any smoking phenotype, we reconfirmed the well-known CHRNA5-CHRNA3-CHRNB4 genes and further yielded a novel association in the DNA methyltransferase gene DNMT3B. The intronic DNMT3B rs910083-C allele (frequency = 44-77%) was associated with increased risk of nicotine dependence at P = 3.7 x 10(-8) (odds ratio (OR) = 1.06 and 95% confidence interval (CI) = 1.04-1.07 for severe vs mild dependence). The association was independently confirmed in the UK Biobank (N = 48,931) using heavy vs never smoking as a proxy phenotype (P = 3.6 x 10(-4), OR = 1.05, and 95% CI = 1.02-1.08). Rs910083-C is also associated with increased risk of squamous cell lung carcinoma in the International Lung Cancer Consortium (N = 60,586, meta-analysis P = 0.0095, OR = 1.05, and 95% CI = 1.01-1.09). Moreover, rs910083-C was implicated as a cis-methylation quantitative trait locus (QTL) variant associated with higher DNMT3B methylation in fetal brain (N = 166, P = 2.3 x 10(-26)) and a cis-expression QTL variant associated with higher DNMT3B expression in adult cerebellum from the Genotype-Tissue Expression project (N = 103, P = 3.0 x 10(-6)) and the independent Brain eQTL Almanac (N = 134, P = 0.028). This novel DNMT3B cis-acting QTL variant highlights the importance of genetically influenced regulation in brain on the risks of nicotine dependence, heavy smoking and consequent lung cancer.Peer reviewe

    Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

    Get PDF
    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer

    Genome-wide association analysis identifies six new loci associated with forced vital capacity

    Get PDF
    Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2–HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease

    Global and local hydrodynamics of bubble columns: effect of gas distributor

    Get PDF
    Global (level swell) and local (WMS – Wire Mesh Sensor) measurements were made on waters of different purities and air, in a cylindrical laboratory bubble column (2 m tall, 0.127 m dia) using two different gas distributors: a perforated plate (to produce homogeneous flow) and a spider sparger (to produce heterogeneous flow). The level swell method provided the steady space-averaged gas holdup/gas flow rate data. The WMS method provided the actual gas holdups and bubble sizes resolved in time and space at one cross-sectional horizontal plane (1 m above distributor), whose integration yields the timeaveraged data. The following results were obtained: The global and local data agree relatively well; there are distinct differences between the radial profiles and bubble size distributions between the two main flow regimes; the local information identifies why the predictions of published models, which account for the smaller and larger bubbles in the flow, may not perform well; the modelling approaches based on the hindrance and enhancement concepts prove to be suitable for the flow regime identification and description, including the transition range between the homogeneous and heterogeneous flows; based on the hydrodynamics, the specific interfacial area is obtained, together with the mass transfer coefficient

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
    corecore