91 research outputs found

    Confound-leakage: confound removal in machine learning leads to leakage

    Get PDF
    BACKGROUND: Machine learning (ML) approaches are a crucial component of modern data analysis in many fields, including epidemiology and medicine. Nonlinear ML methods often achieve accurate predictions, for instance, in personalized medicine, as they are capable of modeling complex relationships between features and the target. Problematically, ML models and their predictions can be biased by confounding information present in the features. To remove this spurious signal, researchers often employ featurewise linear confound regression (CR). While this is considered a standard approach for dealing with confounding, possible pitfalls of using CR in ML pipelines are not fully understood. RESULTS: We provide new evidence that, contrary to general expectations, linear confound regression can increase the risk of confounding when combined with nonlinear ML approaches. Using a simple framework that uses the target as a confound, we show that information leaked via CR can increase null or moderate effects to near-perfect prediction. By shuffling the features, we provide evidence that this increase is indeed due to confound-leakage and not due to revealing of information. We then demonstrate the danger of confound-leakage in a real-world clinical application where the accuracy of predicting attention-deficit/hyperactivity disorder is overestimated using speech-derived features when using depression as a confound. CONCLUSIONS: Mishandling or even amplifying confounding effects when building ML models due to confound-leakage, as shown, can lead to untrustworthy, biased, and unfair predictions. Our expose of the confound-leakage pitfall and provided guidelines for dealing with it can help create more robust and trustworthy ML models

    Rapidly progressive dementia with thalamic degeneration and peculiar cortical prion protein immunoreactivity, but absence of proteinase K resistant PrP: a new disease entity?

    Get PDF
    BACKGROUND: Human prion diseases are a group of rare fatal neurodegenerative conditions with well-developed clinical and neuropathological diagnostic criteria. Recent observations have expanded the spectrum of prion diseases beyond the classically recognized forms. RESULTS: In the present study we report six patients with a novel, apparently sporadic disease characterised by thalamic degeneration and rapidly progressive dementia (duration of illness 2-12 months; age at death: 55-81 years). Light and electron microscopic immunostaining for the prion protein (PrP) revealed a peculiar intraneuritic distribution in neocortical regions. Proteinase K resistant PrP (PrPres) was undetectable by Western blotting in frontal cortex from the three cases with frozen tissue, even after enrichment for PrPres by centrifugation or by phosphotungstic acid precipitation. Conformation-dependent immunoassay analysis using a range of PK digestion conditions (and no PK digestion) produced only very limited evidence of meaningful D-N (denatured/native) values, indicative of the presence of disease-associated PrP (PrPSc) in these cases, when the results were compared with appropriate negative control groups. CONCLUSIONS: Our observation expands the spectrum of conditions associated with rapidly progressive dementia and may have implications for the understanding of the pathogenesis of prion diseases

    Quantification of structural changes in the corpus callosumin children with profound hypoxic-ischaemic brain injury

    Get PDF
    Background Birth-related acute profound hypoxic–ischaemic brain injury has specific patterns of damage including the paracentral lobules. Objective To test the hypothesis that there is anatomically coherent regional volume loss of the corpus callosum as a result of this hemispheric abnormality. Materials and methods Study subjects included 13 children with proven acute profound hypoxic–ischaemic brain injury and 13 children with developmental delay but no brain abnormalities. A computerised system divided the corpus callosum into 100 segments, measuring each width. Principal component analysis grouped the widths into contiguous anatomical regions. We conducted analysis of variance of corpus callosum widths as well as support vector machine stratification into patient groups. Results There was statistically significant narrowing of the mid–posterior body and genu of the corpus callosum in children with hypoxic–ischaemic brain injury. Support vector machine analysis yielded over 95% accuracy in patient group stratification using the corpus callosum centile widths. Conclusion Focal volume loss is seen in the corpus callosum of children with hypoxic–ischaemic brain injury secondary to loss of commissural fibres arising in the paracentral lobules. Support vector machine stratification into the hypoxic–ischaemic brain injury group or the control group on the basis of corpus callosum width is highly accurate and points towards rapid clinical translation of this technique as a potential biomarker of hypoxic–ischaemic brain injur

    Effects of Total Resources, Resource Ratios, and Species Richness on Algal Productivity and Evenness at Both Metacommunity and Local Scales

    Get PDF
    The study of the interrelationship between productivity and biodiversity is a major research field in ecology. Theory predicts that if essential resources are heterogeneously distributed across a metacommunity, single species may dominate productivity in individual metacommunity patches, but a mixture of species will maximize productivity across the whole metacommunity. It also predicts that a balanced supply of resources within local patches should favor species coexistence, whereas resource imbalance would favor the dominance of one species. We performed an experiment with five freshwater algal species to study the effects of total supply of resources, their ratios, and species richness on biovolume production and evenness at the scale of both local patches and metacommunities. Generally, algal biovolume increased, whereas algal resource use efficiency (RUE) and evenness decreased with increasing total supply of resources in mixed communities containing all five species. In contrast to predictions for biovolume production, the species mixtures did not outperform all monocultures at the scale of metacommunities. In other words, we observed no general transgressive overyielding. However, RUE was always higher in mixtures than predicted from monocultures, and analyses indicate that resource partitioning or facilitation in mixtures resulted in higher-than-expected productivity at high resource supply. Contrasting our predictions for the local scale, balanced supply of resources did not generally favor higher local evenness, however lowest evenness was confined to patches with the most imbalanced supply. Thus, our study provides mixed support for recent theoretical advancements to understand biodiversity-productivity relationships

    The Bacterium Endosymbiont of Crithidia deanei Undergoes Coordinated Division with the Host Cell Nucleus

    Get PDF
    In trypanosomatids, cell division involves morphological changes and requires coordinated replication and segregation of the nucleus, kinetoplast and flagellum. In endosymbiont-containing trypanosomatids, like Crithidia deanei, this process is more complex, as each daughter cell contains only a single symbiotic bacterium, indicating that the prokaryote must replicate synchronically with the host protozoan. In this study, we used light and electron microscopy combined with three-dimensional reconstruction approaches to observe the endosymbiont shape and division during C. deanei cell cycle. We found that the bacterium replicates before the basal body and kinetoplast segregations and that the nucleus is the last organelle to divide, before cytokinesis. In addition, the endosymbiont is usually found close to the host cell nucleus, presenting different shapes during the protozoan cell cycle. Considering that the endosymbiosis in trypanosomatids is a mutualistic relationship, which resembles organelle acquisition during evolution, these findings establish an excellent model for the understanding of mechanisms related with the establishment of organelles in eukaryotic cells

    Towards reconciling structure and function in the nuclear pore complex

    Get PDF
    The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC

    The Salivary Secretome of the Tsetse Fly Glossina pallidipes (Diptera: Glossinidae) Infected by Salivary Gland Hypertrophy Virus

    Get PDF
    Tsetse fly (Diptera; Glossinidae) transmits two devastating diseases to farmers (human African Trypanosomiasis; HAT) and their livestock (Animal African Trypanosomiasis; AAT) in 37 sub-Saharan African countries. During the rainy seasons, vast areas of fertile, arable land remain uncultivated as farmers flee their homes due to the presence of tsetse. Available drugs against trypanosomiasis are ineffective and difficult to administer. Control of the tsetse vector by Sterile Insect Technique (SIT) has been effective. This method involves repeated release of sterilized males into wild tsetse populations, which compete with wild type males for females. Upon mating, there is no offspring, leading to reduction in tsetse populations and thus relief from trypanosomiasis. The SIT method requires large-scale tsetse rearing to produce sterile males. However, tsetse colony productivity is hampered by infections with the salivary gland hypertrophy virus, which is transmitted via saliva as flies take blood meals during membrane feeding and often leads to colony collapse. Here, we investigated the salivary gland secretome proteins of virus-infected tsetse to broaden our understanding of virus infection, transmission and pathology. By this approach, we obtain insight in tsetse-hytrosavirus interactions and identified potential candidate proteins as targets for developing biotechnological strategies to control viral infections in tsetse colonies

    Randomized trial of thymectomy in myasthenia gravis

    Get PDF

    Aging-related tau astrogliopathy (ARTAG):harmonized evaluation strategy

    Get PDF
    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators
    corecore