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Abstract

Background: Machine learning (ML) approaches are a crucial component of modern data analysis in many fields, including epidemi-
ology and medicine. Nonlinear ML methods often achieve accurate predictions, for instance, in personalized medicine, as they are
capable of modeling complex relationships between features and the target. Problematically, ML models and their predictions can
be biased by confounding information present in the features. To remove this spurious signal, researchers often employ featurewise
linear confound regression (CR). While this is considered a standard approach for dealing with confounding, possible pitfalls of using
CR in ML pipelines are not fully understood.

Results: We provide new evidence that, contrary to general expectations, linear confound regression can increase the risk of con-
founding when combined with nonlinear ML approaches. Using a simple framework that uses the target as a confound, we show that
information leaked via CR can increase null or moderate effects to near-perfect prediction. By shuffling the features, we provide evi-
dence that this increase is indeed due to confound-leakage and not due to revealing of information. We then demonstrate the danger
of confound-leakage in a real-world clinical application where the accuracy of predicting attention-deficit/hyperactivity disorder is
overestimated using speech-derived features when using depression as a confound.

Conclusions: Mishandling or even amplifying confounding effects when building ML models due to confound-leakage, as shown, can
lead to untrustworthy, biased, and unfair predictions. Our expose of the confound-leakage pitfall and provided guidelines for dealing
with it can help create more robust and trustworthy ML models.
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ear models, that can model complex feature-target relationships
Key Points: [1, 2]. However, the very power these nonlinear models bring to
data anar models, that can model complex feature-target real-
ysis also leads to new challenges. Specifically, as we will detail,
when a standard confound removal approach is paired with non-
linear models, new and surprising issues arise as the unintended
is discovered and misinterpreted as a true effect.

Imagine building a diagnostic classifier for attention-
deficit/hyperactivity disorder (ADHD) based on speech patterns.
This will be a useful clinical tool aiding objective diagnosis
[3]. However, like most disorders, ADHD has comorbidity, for
instance, with depression. Ideally, an ADHD diagnostic classifier
should only rely upon characteristics of ADHD and ignore that
of depression. This is an example of confounding, where it is
Introduction desirable that the confound depression is disregarded by the
classifier. Another example of confounding is the effect of aging
and neurodegenerative diseases on the brain. In a study to build
a neuroimaging-based diagnostic classifier, the nonpathological

® Confound removal is essential for building insightful
and trustworthy machine learning (ML) models.

® Confound removal can increase performance when
combined with nonlinear ML.

¢ This can be due to confound information leaking into
the features.

® Possible reasons are skewed feature distributions and
the feature of limited precision.

® Confound removal should be applied with utmost care
in combination with nonlinear ML.

Machine learning (ML) approaches have revolutionized biomedi-
cal data analysis by providing powerful tools, especially nonlin-
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aging signal is confounding [4]. Confounding is ubiquitous, and
further examples include batch effects in genomics [5-7], scanner
effects in neuroimaging [8], patient and process information in
radiographs [9], and group differences like naturally different
brain sizes in investigation of brain size-independent sex differ-
ences [10, 11]. Ignoring confounding effects in an ML application
can render predictions untrustworthy and insights questionable
[12] as this information can be exploited by learning algorithms
[13], leading to spurious feature-target relationships [14] (e.g.,
classification based on depression instead of ADHD or age instead
of neuronal pathology). The benefits of big data in ML applications
are obvious, especially when modeling weak relationships, but
big data also lead to an increased risk of inducing confounded
models [4, 11, 15, 16]. Confounding, thus, is a crucial concern and,
if not properly, treated can threaten real-world applicability of
ML.

When confounding masks the true feature-target relationship,
its removal can clean the signal of interest, leading to higher gen-
eralizability (e.g., removal of batch effects in genomics) [7]. On
the other hand, when confounding introduces artifactual rela-
tionships, the same procedure can reduce prediction accuracy [17,
18]. In either case, removing or adjusting for confounding effects is
crucial for obtaining unbiased results, as otherwise an ML model
might mostly rely on confounds, rendering signals of interest re-
dundant. Two methods for treating confounding are commonly
employed in data analysis with the goal of building an accurate
ML model that is not biased by the confounding information. Data
can be stratified based on the confounding variables, but it may
introduce confounding information [19], falsely increase test-set
performance by removing harder-to-classify data points [20], and
can result in excessive data loss. As confounds share variation—
usually presumed linear variance—with both the target and the
features, another common method is confound regression (CR),
which removes the confounding variance, also called confounded
signal, from each feature separately using a linear regression
model [4, 20]. The resulting residualized features are considered
confound free and used for subsequent analysis. CR has become
the default method to counter confounding in observational stud-
ies, including in ML applications [16, 20, 21]. Typically, a 2-step
CR-ML workflow is constructed while avoiding risks associated
with typical data leakage by applying CR in a cross-validation—
consistent manner [20, 22]. It is important to note that we use a
practitioner-oriented operational definition of confounds as a set
of variables suspected to share an unwanted effect with both the
features and target, which does not imply causality as in more
formal definitions [23].

A CR-ML workflow typically attenuates prediction perfor-
mance as it removes variance from the features that is informa-
tive of the target. If an increase in performance is observed after
CR, it can be explained by either (i) information-reveal: CR reveals
information that was masked by confounding or (ii) confound-
leakage: leakage of confounding information into the features.
In the case of information-reveal, CR could suppress linear con-
founding or noise, in turn enhancing the underlying (non)linear
signal and making learning easier for a suitable ML algorithm
[13]. This would be a positive effect similar to removing simple
shortcuts in the data [24, 25]. If this is the case, then the resulting
CR-ML workflow would be valuable for modeling nonlinear rela-
tionships. Alternatively, as CR is a univariate operation applied to
each feature, multivariate confounding (across features) could be
revealed, which could help prediction albeit undesirably. On the
other hand, confound-leakage would be an even more worrisome
outcome as it would leak confounding information into the fea-

tures instead of removing it. Confound-leakage would be detri-
mental to the validity and interpretability of the ensuing CR-ML
workflow and in some cases could lead to dangerous outcomes. CR
has been reported to induce biases into statistical workflows, al-
beit notincorporating ML, leading to incorrectly inflated group dif-
ferences inference in combined batch effects removal and group
difference analysis [26]. It is important to note that CR is not
without other pitfalls; for instance, it might fail to completely re-
move confounding information [21, 27]. Still, CR is considered the
de facto method, and therefore analyzing the hitherto unknown
pitfall of leaking confounding information through CR is helpful.
Furthermore, there were speculations of confound-leakage in ML
workflows [18], but it has not yet been systematically shown, an-
alyzed, or explained.

To disentangle the 2 possible explanations of performance in-
crease after CR, we systematically analyzed the 2-step CR-ML
workflow. For analysis purposes and to gain detailed knowledge,
we propose a framework that uses the target as a confound (TaCo),
in which we use a single confound that is the target. As a confound
needs to share variation with both the target and the feature,
any possible confound must share all confounded signal with the
target. Hence, the target can be seen as a “superconfound,” sub-
suming all possible confounding effects. Although it is unlikely
to encounter a confound equal to the target in real applications,
TaCo provides a framework for systematic evaluation. It should be
noted that real confounds will fall on the continuum from weak
(low confounded signal) to strong (TaCo) depending on their de-
gree of similarity with the target. Indeed, as we show, the TaCo
framework reveals strong effects where the prediction accuracy
is boosted from moderate to perfect as well as weaker effects for
confounds weakly correlated with the target. A previous work has
used TaCo for evaluating the validity and reliability of confound
adjustment methods [21].

To this end, we performed extensive empirical analyses on sev-
eral benchmark datasets, providing strong evidence for confound-
leakage. First, we showcase confound-leakage in walk-through
analyses. Then, using the TaCo framework, we systematically an-
swer whether the improvement in prediction performance after
CRis due to leakage. For this, we used benchmark datasets as well
as several conceptually simple simulations covering both classifi-
cation and regression problems. Finally, with a clinically relevant
task of ADHD diagnosis using speech-related features with de-
pression as a confound, we demonstrate the misleading impact
of confound-leakage.

Results
Walk-through analysis

The goal of this section is to introduce readers to our analysis
approach with intuitive examples. We show 1 exemplary case of
TaCo removal for a binary classification task and a CR scenario
with a weaker confound in a regression task. In both cases, we
randomly split the data into 70% train and 30% test parts. The CR
and prediction models were learned on the training data, and the
results are reported on the test split. We will show that confound-
leakage can be concluded if performance increases after perform-
ing CR on shuffled features (Xcg).

TaCo removal for binary classification

We analyzed the “bank investment” data to predict whether a cus-
tomer will subscribe to term deposit given their financial and so-
cioeconomic information. We used a decision tree (DT) with lim-
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ited maximum depth of 2 for visualization ease. This example
is meant to demonstrate key aspects of our proposed analyses
(Fig. 1).

TaCo removal showed a much higher area under the curve for
the receiver operating characteristic curve (AUCROC) of 0.98 com-
pared to the baseline AUCROC of 0.75 without CR. Still, the TaCo-
removed features were highly similar to the original features (me-
dian Pearson’s correlation: 0.99, Fig. 1A,B). The 2 ensuing DTs were,
however, completely different and relied on different features. No-
tably, these drastic differences were induced by minute feature al-
terations after CR that are hardly detectable by humans but are
effectively captured by DT (Fig. 1C,D). Such performance increase
can be due to revealed information or confound-leakage. There-
fore, we sought to gain evidence to distinguish between these
2 scenarios using 2 complementary measurements: (i) destroy-
ing the relationship between features and target and (ii) use of
confound-predicted features.

To destroy the feature-target relation, we shuffled each fea-
ture before CR (X) to create Xcz and repeated the analysis. As
there should be no predictive information in the shuffled features,
the only explanation for above chance-level performance is CR
leaking information into the confound-removed features Xcx (i.e.,
confound-leakage). We applied the shuffling procedure to a train-
test splitin this walk-through analysis. But it should be noted that
when combined with a (nested) cross-validation and Bayesian Re-
gion of Practical Equivalence (ROPE) approach, this procedure can
be used to compare models similarly as a permutation test (see
section “Feature shuffling approach”). We observed chance-level
performance without CR (AUCROC = 0.48) for the shuffled fea-
tures. However, a performance increase after TaCo removal was
observed (AUCROC = 0.99). This analysis shows that performance
increase after TaCo removal with shuffled features indicates the
possibility of confound-leakage.

Confound removal for regression

As an example of a weaker confound on a regression task, we sim-
ulated a binary confound and then sampled a feature from differ-
ent distributions for each confound value (confound equal to 0 or
1). Then we added the confound to a normally distributed target
(M = 0 and SD = 0.50; Fig. 1E,F). This creates a clear confound-
ing situation, where the confound affects both the feature (point-
biserial correlation = 0.71, P < 0.01) and the target (point-biserial
correlation = 0.71, P < 0.01) and thus leads to a spurious relation-
ship between the feature and the target (Pearson’s correlation =
0.51, P < 0.01). Following the same procedure as in the previous
example, we observed increased performance after CR using a DT
with limited depth of 2 (R? using X = 0.29, Xcg = 0.42). As in these
simulated data, only a spurious relation (via confound) exists be-
tween the feature and target, it is safe to assume that an increased
performance after CR is due to confound-leakage. Furthermore,
we found a probable mechanism behind this confound-leakage to
be the distribution of the features conditioned on the confound.
More precisely, CR shifts the feature values for confound = 1 in
between most feature values for the confound = 0 (Fig. 1E). This
leaks the confounding information into the feature instead of re-
moving it (Fig. 1F). The shuffled features, however, were not sen-
sitive to confound-leakage (X = 0,X = —0.01), which is expected
considering the probable cause for such leakage depends on the
joint distribution of the confound and the feature. When shuffling
the features within each confound category to preserve the joint
distribution, we observed an increase in performance after CR (M
= 0.29 before to M = 0.42). This result indicates that shuffling the
features might not be always sensitive to confound-leakage. We,
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nevertheless, use independently shuffled features in our analysis
for practicality, particularly in the context of continuous or mul-
tiple confounding factors.

Analyses of benchmark data
TaCo removal increases performance of nonlinear methods

Our systematic and cross-validation (CV)-consistent analysis
comprised comparison between TaCo removal pipelines and no-
CR pipelines on 10 UC Irvine (UCI) datasets. TaCo removal led to
a meaningful increase in out-of-sample scoring using all tested
nonlinear models, random forest (RF) (7/10 datasets), DT (8/10),
support vector machine (SVM) with radial basis function (RBF)
kernel (5/10), and multilayer perceptron (MLP) (7/10) (Fig. 2, Sup-
plementary Fig. S1). This suggests that confound-leakage is a risk
associated with the usage of a CR-ML pipeline with nonlinear ML
models. Furthermore, this suggests that the DT-based algorithms
(DT and RF) are most susceptible to showing increased perfor-
mance.

CR using weaker confounds also increases performance

As the target is the strongest possible confound, TaCo represents
an extreme case. To test whether the potential leakage we found
with TaCo extends to CR in general, using the UCI datasets, we
simulated confounds related to the target at different strengths
measured by Pearson’s correlation ranging from 0.2 to 0.8. De-
pending on the dataset, different amounts of correlated con-
founds led to leakage after CR. We observed potential confound-
leakage for 5 of the 10 datasets with at least 1 of the confound-
target strengths. As expected, a higher target-confound corre-
lation led to more leakage (i.e., higher performance after CR)
(Fig. 2Q).

Increased performance after TaCo removal is due to
confound-leakage

As described in the walk-through analysis (see “TaCo removal for
binary classification”), we measure the performance after first
shuffling the features to evaluate whether the increased perfor-
mance after TaCo removal/CR is due to information reveal or
confound-leakage. After shuffling the features, both pipelines, no
CR and TaCo removal, should perform close to chance level if
the improved performance is due to revealed information. Indeed,
the no-CR pipeline performed close to the chance level, while the
TaCo-removal pipeline increased the performance (Fig. 2, TaCo
CR Shuffled). As there should be no predictive information in the
shuffled features, above chance-level performance could only be
obtained if the CR leaks information. Thus, this result provides
strong evidence in favor of the confound-leakage.

For the simulated weaker confounds, these results were less
strong, but we still found 5 of 10 datasets where Xcg and 9 of 10
where Xc; performed above chance level.

Possible mechanisms for confound-leakage

As a multitude of mechanisms could lead to confound-leakage,
exhaustively identifying all possible mechanisms is out of the
scope of this article. Rather, we want to highlight 2 possible mech-
anisms leading to confound-leakage inspired by the walk-through
analyses: (i) confound-leakage due to continuous features devi-
ating from normal distributions (see “Confound removal for re-
gression”) and (ii) confound-leakage due to unbalanced features
of limited precision (see “TaCo removal for binary classification”).
Both mechanisms could be summarized under the umbrella of
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Figure 1: A walk-through analysis demonstrating our analysis pipeline and confound-leakage using DT. The results shown here are on the 30% test
split. For the binary classification walk-through using the bank investment dataset, a subset of the features used is shown before CR (A) and after CR
(B). Induced DTs and their performance before (C) or after CR (D). The DT after CR (D) is based on minute differences in only 2 features and still
performs nearly perfectly and better compared to the DT on raw data (C). The regression analysis walk-through using simulated data is depicted as
feature-target relationships with the dotted line showing the predicted values (E, F). The nonnormal distribution of the feature conditioned on the
confound leaks information usable by the DT. Here, CR removes the linear relationship, as intended, but introduces a stronger nonlinear one by
shifting the distribution of Xcg given confound = 0 in between the 2 peaks of Xcr given confound = 1 (F).
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Figure 2: Performance on the UCI benchmark datasets when using raw vs. CR features (A) and raw vs. the predicted features given the
confound/TaCo/X (B). The 2 columns correspond to (i) TaCo removal with 4 ML algorithms (logistic regression [LR], DT, RF, MLP) and (ii) CR with
simulated confound with different correlations to the target (range 0.2-0.8) with RF. (A, B) Performance using the original features. (C, D) Performance

on shuffled features. To check whether a difference between the performance of 2 models is meaningful, we used the Bayesian ROPE approach to

identify what is most probable: performance being higher before removal (<), being higher after removal (>), or equivalent (=) (see the Methods

section for details). When using a linear model (LR), TaCo removal leads to reduction in prediction performance, as expected. In contrast, nonlinear

5

models lead to a higher performance for all datasets. This increase could be explained by confound removal revealing information already in the data
(suppression) or confound removal leaking information into the features (confound-leakage). Shuffling the features destroys the association between

features and the target; therefore, subsequent performance increase after TaCo removal indicates the possibility of confound-leakage (C, D). The
simulated confounds show that an increase after CR is also possible for confounds weakly related to the target (B, D), and 1 dataset (Blood) shows

strong evidence of confound-leakage.
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(small) differences of the conditional distributions of features
given the confound inside of CV-folds.

As DT-based models are very popular ML algorithms [28] and
seem to be most susceptible to the described problems (see “TaCo
removal increases performance of nonlinear methods”), we will
focus on them in our simulations to decrease the complexity of
our results. Furthermore, we will use a DT whenever there is only
1 features and RF when there are multiple features.

Confound-leakage due to normal

distributions

deviation  from

Consider simulating a standard normal feature not informative
of a binary target. Then consider adding a smaller distribution
around opposing extreme values separately for each class of a
binary target (Fig. 3A). The resulting feature only differs system-
atically w.r.t. the classes at the extreme values. As CR with a bi-
nary confound is equivalent to subtracting the mean for each con-
founding group from the respective feature, this operation is now
biased toward the extreme parts of the feature distribution. Con-
sequently, Xcg exposes confounding information in terms of de-
crease in the overlap of the feature distributions conditioned on
the confound (Fig. 3A,B). In other words, confounding information
leaked via CR in turn increases the prediction performance (AU-
ROC from 0.51 before to 0.58 after TaCo removal). To show that the
increased performance is not only due to better prediction of ex-
treme values, we also tested the same model on a test set without
the extreme values. The results were in line with previous obser-
vations, as the AUROC improved from 0.48 before to 0.57 after CR.

We also observed higher performance after similar decreased
overlap due to TaCo removal in a simplified version of the “house
pricing” UCI benchmark dataset (Fig. 3C,D), providing real-world
evidence for this phenomenon.

Lastly, we investigated whether such effects could also occur
when randomly sampling nonnormal distributed features instead
of carefully constructing the features conditioned on the con-
found. To this end, we sampled an increasing number of features
(1 to 100) either using a random normal or skewed (x?, df = 3) dis-
tribution independent of a normally distributed target.

Using RF, we observed increased performance after TaCo re-
moval with skewed features but not with normally distributed
features (e.g., R? of M = 0.23 with SD = 0.06 compared to R? of
M = —0.04 with SD = 0.04, respectively, with 100 features). Im-
portantly, this effect increased with the number of features (Fig.
4). To further illustrate this point, we performed another simu-
lation depicting a typical confounding situation. Here, we sam-
pled an increasing number of features (1 to 100) with different
x? distribution given a binary confound (df = 3 (4) and scale =
0.5 (1) for confound = 0 (1)). The target was sampled from a nor-
mal distribution (M = 0, SD = 0.2), and the confound was added
to it. Analysis of these data shows an increased performance af-
ter confound removal from M = —0.52 (SD = 0.02) to M = —0.50
(SD = 0.03) using 1 feature and from M = —0.02 (SD = 0.01) to M =
0.18 (SD =0.01) using 100 features. These results demonstrate that
the effect of confound-leakage increases with increasing number
of features. These simulations show that skewed features and, by
extension, potentially other nonnormal distributed features can
lead to confound-leakage. Interestingly, another consequence of
nonnormal distributions is insufficient removal of confounding
information [21].

Confound-leakage due to limited precision features

A similar effect was observed with binary features, where unbal-
anced feature distributions conditioned on the confound led to

leakage. Using simulations, first we confirmed that a binary fea-
ture perfectly balanced in respect to the TaCo did not lead to
confound-leakage (AUCROC of M = 0.50, SD = 0). Then, we re-
peated similar simulations but now we swapped 2 randomly se-
lected distinct values of the feature within each CV-fold, preserv-
ing the marginal distribution of the feature but slightly changing
its distribution conditional on the confound. This can be seen as
adding a small amount of noise to the feature. Still, such a simple
manipulation led to drastic leakage after TaCo removal with per-
fect AUCROC (M = 1.00, SD = 0.00), compared to AUCROC without
CR (M = 0.52, SD = 0).

To further demonstrate this effect, we analyzed a simple
demonstrative classification task using DT and 2 binary features
derived from the UCI “heart dataset” representing the resting elec-
trocardiographic (Restecg) results. Without CR, the DT had 117
nodes and achieved a moderate AUCROC (M = 0.74, SD = 0.06).
In stark contrast, after TaCo removal, the DT was extremely sim-
ple with only 5 nodes and achieved near-perfect AUROC (M = 0.99,
SD = 0.01) (Fig. 3E). Tellingly, this DT was able to make accurate
predictions based on numerically minute differences in feature
values. The reason for this becomes apparent when remember-
ing that CR with a binary confound is equivalent to subtracting
the mean of the corresponding confounding group from the re-
spective feature. When applied to a binary feature, this results in
4 distinct values for a residual feature (Fig 3E). When taken to-
gether with the results on the benchmark UCI data (see “Anal-
yses of benchmark data”), we can see that such minute differ-
ences can be exploited by models such as DTs, RFs, and MLPs but
likely not by linear models. It is important to note that leakage
through minute differences was observed for not only binary fea-
tures but also other features with a limited precision (values con-
taining only integers or with limited fractional parts). To demon-
strate this, we predicted a random continuous target using either
a normally distributed feature or the same feature rounded to the
first digit. The original nonrounded feature performed at chance
level both before (R?: M = —1.10, SD = 0.06) and after TaCo removal
(R?: M = —1.03, SD = 0.07), while after rounding, it led to an im-
provement from M = —0.08 (SD = 0.01) to M = 0.70 (SD = 0.16)
after TaCo removal. Features with limited precision (i.e., with no
or rounded fractional part) are common, for instance, age in years,
questionnaires in psychology and social sciences, and transcrip-
tomic data.

Confound-leakage poses danger in clinical
applications

ADHD is a common psychiatric disorder that is currently diag-
nosed based on symptomatology, but objective computerized di-
agnosis is desirable [29]. Ideally, a predictive model for diagnosing
ADHD should not be biased by comorbid conditions (e.g., depres-
sion) [30]. To this end, comorbidity can be treated as a confound.
However, a confound-leakage affected model, albeit with appeal-
ing performance, could lead to misleading diagnosis and treat-
ment. To highlight the danger of confound-leakage on this clin-
ically relevant task, we analyzed a dataset with speech-derived
features with the task to distinguish individuals with ADHD from
controls. Our version of the dataset is a balanced subsample of
the dataset described by von Polier et al. [3].

The baseline RF model without CR provided mean AUROC (M =
0.71,SD = 0.02). We then removed 4 confounds commonly consid-
ered for this task—age, sex, education level, and depression score
(Beck’s Depression Inventory, BDI)—via featurewise CR in a CV-
consistent manner. This resulted in a much higher AUCROC (M =
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Figure 3: Two mechanisms for confound-leakage. First mechanism where nonnormal distributions get shifted apart through CR. (A, B) An example
using a simulation with extreme values on opposing sides for 1 feature conditioned on the TaCo. (C, D) A simplified version (binary target for
visualization purposes) of the house price UCI benchmark dataset. Here, the distributions of the feature conditional on the TaCo are different (C): a
narrow distribution (TaCo = 1) and a distribution with 2 peaks (TaCo = 0). TaCo removal shifts the narrow distribution in between the two peaks (D),
leaking information usable by nonlinear ML algorithms. The second mechanism, leakage through minute differences in the feature after CR, is
highlighted through the visualization of the DT trained on the heart dataset after CR (E). Distribution plots visualize the data at each decision node.
The decision boundary is shown as a dotted line. For decision nodes before leaf nodes, the side of the decision node leading into a prediction is colored
to represent the predicted label as diagnosed (green) or not (purple). The minute differences in the 2 used features that perfectly separate the data into
the 2 classes can be seen.
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Figure 4: Prediction performance of an RF trained with (blue) or without (red) confound removal on an increasing number of features. Each feature
was sampled from a random standard normal distribution (M = 0, SD = 1), a random x? distribution with df = 3, or a x? distribution with a df = 3, scale
= 0.5 or df = 4, scale = 1 for the confound being equal to 0 and 1, respectively. (A) The RF trained on the normally distributed features did not achieve
performance above the chance level (R? < 0) irrespective of confound removal. (B, C) When training the RF on either of the x? distributed features,
confound removal resulted in above chance-level performance (R? > 0). This effect increased with an increasing number of features and can only be

explained by confound removal leaking information into the features.

0.86,SD = 0.02). This model would be very attractive for real-world
application if its performance is true (i.e., not impacted by leak-
age). However, as we have shown with our analyses, confound-
leakage can lead to such performance improvement. If confound-
leakage is indeed driving the performance, then this model could
misclassify individuals as having ADHD because of confounding
effects (e.g., their sex or depression), leading to misdiagnosis and
wrong therapeutic interventions. To disentangle the effect of each
confound, we looked at the performance after CR for each con-
found separately. Performing CR with BDI led to a high AUCROC
with original features after CR (M = 0.91, SD = 0.01) and shuf-
fled features (M = 0.84, SD = 0.01) (Fig. SA,B). This result revealed
that BDI is driving the potential leakage, owing to its strong re-
lation to the target (point-biserial correlation, r = 0.61, P < 0.01).
Furthermore, a permutation test also led to the same conclusion
(see Methods and Supplementary Fig. S2). Training CR models only
on healthy individuals can be helpful in clinical applications [4].
We investigated this variant of CR, and again the AUCROC in-
creased for original features after CR M = 0.83 (SD = 0.02) and
an increase with shuffled features from M = 0.51 (SD = 0.05) to
M = 0.79 (SD = 0.02), suggesting that confound leakage is also a
concern for variants of CR. Lastly, we wanted to evaluate why we
observe confound-leakage on this dataset. The limited precision
of features cannot be the reason here as all features are contin-
uous. Therefore, we hypothesized that the confound leaked due
to some features deviating from normal distributions. To this end,
we first compared the feature importance between the RF after
CR and using the original features. Here, we observed the RFs’ 10

most important features were completely different (Fig. 5C,D), in-
dicating that the 2 RF models rely on different relationships in
the data. Next we visualized the distributions of the 2 most im-
portant features of the RF after CR for both models. This visual-
ization (Fig. 5E,F) clearly shows that CR has shifted the distribu-
tions due to deviations from normal distributions leaking infor-
mation in their joint distribution. Furthermore, we trained new
DTs using only these 2 features before or after CR. This led to an
increase of AUCROC from 0.61 to 0.70 after CR only using these
features. These analyses clearly demonstrate that real-world ap-
plications could suffer from confound-leakage and users should
exercise care when implementing and validating a CR-ML work-
flow.

Discussion

Here, we exposed a hitherto unexplained pitfall in CR-ML work-
flows that use featurewise linear confound removal—a method
popular in epidemiological and clinical applications. Specifically,
we have shown this method can counterintuitively introduce con-
founding, which can be exploited by some nonlinear ML algo-
rithms. Thus, in addition to the already known pitfalls of residual
confounding [21], our results show that CR may actually intro-
duce confounding information. We provide evidence of confound-
leakage using a range of systematic controlled experiments on
real and simulated data comprising both classification and re-
gression tasks. First, to establish confound-leakage as opposed
to information-reveal (of possibly nonlinear information) as the
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Figure 5: The real-world ADHD speech dataset. The performance when using different confounds (A, B), most important features of RF when using
Beck’s Depression Inventory (BDI) as confound (C, D), and visualization of confound-leakage due to deviation from normal distributions (E, F). (A) The
performance of an RF predicting ADHD vs. healthy controls using the original features. To check whether a difference is meaningful, we used the
Bayesian ROPE approach to identify what is most probable: performance being higher before removal (<), being higher after removal (>), or equivalent
(=) (see Methods section). An increased performance can be observed when using all confounds, BDI as a confound, or the TaCo. The same pattern
appears when the features were shuffled (B). This shows that the increase in performance is due to confound-leakage, and BDI is a driving factor for
this leakage as it leaks information when used as a confound. (C, D) The 10 most important features for using X and Xcg as features. The feature
ranking is shown as a white label on top of each cell. The most important features are different for X and Xcg. Furthermore, the most important
features of 1 model ranked as very unimportant in the other. (E, F) Decision boundaries of DT trained on the 2 most important features after CR. The
background colors indicate the prediction of the model, and the points show the true target value and the x-axis the 2 most important features. The
distribution of each feature conditioned on the target is shown as the density plots. One can see that CR leaks information by cleanly separating the
blue and red points.
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reason behind increased performance after CR, we proposed the
TaCo framework (i.e., using the target as “superconfound”). This
extreme case of confounding allowed us to establish the exis-
tence, the extent, and possible mechanisms of confound-leakage.
Specifically, by comparing the without CR baseline performance
with CR after feature shuffling (Xcg), this framework can iden-
tify confound-leakage as the cause of increased predictive per-
formance. We then extended the same framework to the more
realistic scenario of weaker confounds showing that also there
confound-leakage can occur.

To identify risk factors of confound-leakage, we performed sev-
eral analyses. First, we demonstrated a mechanism by which
confound-leakage can occur: differences of the conditional dis-
tributions of features given the confound. In the case of continu-
ous features, nonnormal distributions (e.g., skewed distributions)
and in the case of discrete features, frequency imbalances can
cause leakage, although other mechanisms could exist. Addition-
ally, we show that features of limited precision (e.g., age in years
and counts) also showed susceptibility due to this mechanism.
Lastly, our results showed that the risk of confound-leakage in-
creases with the number of features, which is especially problem-
atic in the era of “big data,” where tens of thousands of features
are a norm.

Still, we would like to highlight that we do not claim to have
found all possible ways confound-leakage can happen. For in-
stance, it is possible that other modeling approaches, even linear
ones, could be susceptible to confound-leakage, although we did
not find evidence for it in our analyses. Nonetheless, confound-
leakage can bias the data and may negatively impact subsequent
statistical analysis [21].

Itis important to note that although similar, confound-leakage
is not equal to collider bias. Colliders are variables causally in-
fluenced by both the features and target [19]. Both collider bias
and confound-leakage describe situations where variable adjust-
ment can lead to spurious relationships between features and tar-
get. However, the collider bias assumes that the removed variable
has to be caused by both the features and the target, which is
not shared by confound-leakage. One cannot exclude the possi-
bility of collider removal using CR for many of our experiments as
our operational definition of confounds does not include any as-
sumption of causality. Still, we observe confound-leakage through
CR for at least 1 causally defined confound (see “Walk-through
analysis”) and variables showing relationship only with the tar-
get. Such associations are not covered by the causal relation-
ships described by a collider. In other words, the mechanisms
of confound-leakage can lead to leaked information due to any
variable related to the target and not only colliders or causal
confounds.

Taken together, our extensive results show that the commonly
used data types and settings of nonlinear ML pipelines are sus-
ceptible to confound-leakage when using featurewise linear CR.
Therefore, this method should be applied with care, and the
ensuing models should be closely inspected, especially in criti-
cal decision domains. We concretely demonstrated this using an
application scenario from precision medicine by building mod-
els for diagnosis of ADHD. We found that the attempt to con-
trol for comorbidity with depression using CR led to confound-
leakage. As many disorders often exhibit severe comorbidity
(e.g., AHDH and depression, as we demonstrated here, but also
neurodegenerative disorders are strongly confounded by aging-
related factors [31] as well as comorbidity in mental disorders
[32, 33]), the issue of confound-leakage should be carefully as-
sessed in all such applications. We recommend the following

best practices when applying CR together with nonlinear ML
algorithms:

1) Assess confounding strength: Check the confounds’ rela-
tion to each feature and the target. In general, confounds
strongly related to the target pose a greater danger of
leaking predictive information. Here, we used a straightfor-
ward approach of measuring the correlations between the
confound and target/feature. Other methods can be em-
ployed (e.g., proposed by Spisak [27]). Furthermore, mea-
suring how dependent the predictions of a model are on
the confound by permutation testing [34, 35] or the ap-
proach proposed by Dinga et al. [21] can be helpful. To
gain additional information, the reader might be inter-
ested in methods to estimate the variance in the target ex-
plained by ML predictions that confounds cannot explain
(21, 27].

Compare performance with and without CR: If the perfor-
mance increases after CR, one should investigate the reason
behind the increase.

Gain evidence against or in favor of the confound-leakage:
The procedure of shuffling the features followed by CR as we
defined in the TaCo framework can provide clues regarding
confound-leakage. Our shuffling approach can be seen as a
single iteration of permutation testing. As our experiments
suggest this is sufficient to obtain an indication of confound-
leakage. However, a permutation test-based null distribution
can quantify the variability and provide additional informa-
tion. It is important to note, however, that while this can
provide evidence for confound-leakage, we are not aware of
a procedure to definitively exclude confound-leakage as an
explanation.

Carefully choose alternatives: If confound-leakage seems
probable, then consider alternative confound adjustment
methods. Stratification [20, 36] is commonly in conventional
ML or unlearning of confounding effects [37], which is com-
mon in deep learning and further general approaches that
promote fairness [12, 38]. Note, however, that these proce-
dures may also entail pitfalls. Hence, we caution researchers
to exercise care when applying any confound adjustment
protocol and to carefully consider limitations of the mod-
eling approach used.

N
—

W
=

*

Conclusions and future directions

Important societal questions involving health and economic pol-
icy can be informed by applying powerful nonlinear ML mod-
els to large datasets. To draw appropriate conclusions, confounds
must be removed without introducing new issues that cloud the
results. In the present study, we performed extensive numeri-
cal experiments to gather evidence for confound-leakage. Using
feature shuffling and predictions due to confound predicted fea-
tures as proposed here, investigators can get an initial indication
of whether their pipeline and data are susceptible to confound-
leakage. We highlighted the conditions most likely to lead to leak-
age. Although we made progress on understanding these issues,
there is no full-proof method for detecting and eliminating leak-
age. We hope our results prompt others to push further, perhaps
expanding on the standard definition we adopted for confounds
by introducing causal analyses. We hope our and allied efforts
inform both researchers and practitioners who incorporate ML
models into their data analyses. As a starting point, we suggest
following the guidelines we provide to mitigate against confound-
leakage.
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Methods
Data

We analyzed several ML benchmark datasets from diverse do-
mains to draw generalizable conclusions. To ensure reproducibil-
ity, most datasets come from the openly accessible UCI repository
[39]. We included 5 classification tasks and 5 regression tasks with
different sample sizes and numbers of features. All classification
problems were binary or were binarized, and class labels were bal-
anced to exclude biases due to class imbalance [40].

We also used one clinical dataset, a balanced subsample of
the ADHD speech dataset described by von Polier et al. [3]. This
data includes 126 individuals with 6,016 speech-related features,
a binary target describing ADHD status (ADHD or control) and
contains 4 confounds: gender, education level, age, and depres-
sion score measured using the BDI. For more information on the
datasets, see Supplementary Table S1.

Confound removal

Confound removal was performed following the standard way of
using linear regression models. Following the common practice,
we applied CR to all the features. Specifically, for each feature, a
linear regression model was fit with the feature as the dependent
variable and the confounds as independent variables. The residu-
als of these models, thatis, original feature minus the fitted values
were used as confound-free features (Xcz = X — X). This procedure
was performed in a CV-consistent fashion (i.e., the confound re-
moval models were fitted on the training folds and applied to the
training and test folds) [20, 22].

Target as a confound (TaCo)

The TaCo framework allows systematic analysis of confound re-
moval effects. Confounding is a 3-way relationship between fea-
tures, confounds, and the target. This means that a confound
needs to share variance with both the feature and the target. Mea-
suring or simulating such relationships can be hard, especially
if linear univariate relationships cannot be assumed. Further-
more, effects of confound removal should increase with the actual
strength of the confound. The target itself explains all the shared
variance and thus is the strongest possible confound. Therefore,
using the target as a confound (i.e., TaCo) measures the most pos-
sible extent of confounding. In addition, using the TaCo simplifies
the analysis to a 2-way relationship. Lastly, the TaCo approach is
applicable to any dataset and can help to measure the strongest
possible extent of confound-leakage even without knowing the
confounds.

Machine learning pipeline

To study the effect of CR on both linear and nonlinear ML al-
gorithms, we employed a variety of algorithms: linear/LR, linear
kernel SVM, RBF kernel SVM, DT, RF, and MLP with a single hid-
den layer (relu). Additionally, we used dummy models to evaluate
chance-level performance.

In the preprocessing steps, we normalized the continuous fea-
tures and continuous confounds to have a mean of zero and unit
variance, again in a CV-consistent fashion. Any categorical fea-
tures were one-hot encoded following standard practice.

Evaluation

We compared the performance of ML pipelines with and without
CR. To this end, we computed the out-of-sample AUCROC for clas-
sification and predictive R? from scikit-learn [41] for regression
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problems in a 10 times repeated 5-fold nested CV. We employed
the Bayesian ROPE approach [42] to determine whether the re-
sults for a given dataset and algorithm with and without CR were
meaningfully higher, lower, or not meaningfully different.

The Bayesian ROPE for model comparison

In this study, we used the Bayesian ROPE [42] approach to qualify
differences between K-fold cross-validation results coming from
2 models. This approach uses the Bayesian framework to com-
pute probabilities of the metric falling into a defined region of
practical equivalence or of 1 ML pipeline scoring higher than the
other. This is achieved by defining a region of equivalence (here
we used 0.05). Consequently, the Bayesian ROPE approach allows
us to make probabilistic statements regarding whether and, if so,
which of the ML pipelines score higher. We summarize these dif-
ferences using the following symbols: = (highest probability of
pipelines scoring practically equivalent), < (highest probability of
right pipeline scoring higher), and > (highest probability of left
pipeline scoring higher). Other possibilities, such as the signifi-
cance test correcting for the dependency structure in K-fold CV
[43] or permutation testing by shuffling the target or features, can
be employed when suitable.

Feature shuffling approach

Shuffling the features while keeping the confounds and target in-
tact destroys the feature-target and feature-confound relation-
ships while preserving the confound-target relationship. There-
fore, after feature shuffling, any confound adjustment method
cannot reveal the feature-target relationship, but it can still leak
information. In other words, any performance above the chance
level after CR on shuffled features is an indication of confound-
leakage. Feature shuffling is also used in other approaches such
as permutation testing (see section “The Bayesian ROPE for model
comparison”) to test effectiveness of confound adjustment meth-
ods [21]. Permutation testing can be computationally expensive
and, like other frequentist tests, it cannot accept the null hypoth-
esis to establish equivalence. We, therefore, adopted a computa-
tionally feasible methodology. We shuffle the features, perform re-
peated nested cross-validation, and then apply the Bayesian ROPE.
For completeness, we show that both permutation testing and the
Bayesian ROPE detect confound leakage in the clinical dataset. In
some cases, feature shuffling approaches might need further con-
sideration, for instance, shuffling features within confound cate-
gories to preserve their joint distribution (see “Walk-through anal-
ysis”) and the possibility of suppression and leakage happening
simultaneously. Nevertheless, they serve as a useful tool for de-
tecting confound leakage, as shown in this work.

Availability of Source Code and
Requirements

® Project name: Confound-leakage

® Projecthomepage: https://github.com/juaml/ConfoundLeakage

® Operating system(s): GNU/Linux

® Programming language Python 3.10.8 [43]

® Other requirements: scikit-learn 0.24.2, baycomp 1.0.2, mat-
plotlib 3.5.1, seaborn 0.11.2, dtreeviz 1.3.5, numpy 1.22.3, pan-
das 1.2.5

® License: GNU Affero General Public License v3.0
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Data Availability

All 10 UCI benchmark datasets can be accessed freely at the UCI
machine learning repository [39]. Together with our simulated
data (available under [44]), the UCI benchmark datasets com-
pose minimal data sets to reproduce our key findings. Addition-
ally, we analyzed 1 real-world clinical dataset [3]. These sensi-
tive data are available from PeakProfiling GmbH with certain re-
strictions. Restrictions apply to the availability of the data, which
were used under license for this study. Please contact Jérg Langner,
the cofounder and CTO of PeakProfiling GmbH, with requests. An
archival copy of the code and supporting data is also available via
the GigaScience database, GigaDB [45].

Additional Files

Supplementary Fig. S1. Performance on the UCI benchmark
datasets when using raw vs. CR features (A) and raw vs. the pre-
dicted features given the confound/TaCo/X (B). The 2 columns cor-
respond to (i) TaCo removal with 6 ML algorithms (LR, DT, RF, MLP,
Lin SVM, RBF SVM) and (ii) CR with simulated confound with dif-
ferent correlation to the target (range 0.2-0.8) with RE. (A, B) Per-
formance using the original features. (C, D) Performance on shuf-
fled features. When using a linear model (LR), TaCo removal leads
to reduction in prediction performance, as expected. In contrast,
nonlinear models lead to a higher performance for all datasets.
This increase could be explained by confound removal reveal-
ing information already in the data (suppression) or confound re-
moval leaking information into the features (confound-leakage).
Shuffling the features destroys the association between features
and the target; therefore, subsequent performance increase after
TaCo removal indicates the possibility of confound-leakage (C, D).
The simulated confounds show that an increase after CR is also
possible for confounds weakly related to the target (B, D), and 1
dataset (Blood) shows strong evidence of confound-leakage.
Supplementary Fig. S2. We performed permutation testing with
1,000 iterations. After shuffling the features, a significantly lower
performance was observed compared to the original features X.
No significant difference between raw and shuffled features was
observed when using the Xcr features. This result is in line with
the leakage hypothesis as the higher accuracy after shuffling and
CR indicates leaking target-related confounding information into
the features.

Supplementary Table S1. Overview of all the datasets used.
Shows each dataset with their associated problem type, sample
size, feature number, and source. Our datasets cover a big range
of features and sample sizes. All datasets with the exception of the
speech ADHD one are freely accessible through the UCI machine
learning repository.

Supplementary Table S2. Overview of all the simulations used.
Including pseudo-code to create the features (X), target (y), and
confounds (c). Variables were sampled from normal distributions
(N), with different means (M) and standard deviations (SD) or bi-
nary distributions (binary). repeat(list, number) indicates the repeti-
tion of a list of values ([value, value,...]) are repeated for a number
of times. concat means the concatenation of multiple arrays, and
where condition — operation means that the operation is executed
for where the condition is met.
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