Background Birth-related acute profound hypoxic–ischaemic
brain injury has specific patterns of damage including the
paracentral lobules.
Objective To test the hypothesis that there is anatomically coherent
regional volume loss of the corpus callosum as a result of
this hemispheric abnormality.
Materials and methods Study subjects included 13 children
with proven acute profound hypoxic–ischaemic brain injury
and 13 children with developmental delay but no brain abnormalities.
A computerised system divided the corpus callosum
into 100 segments, measuring each width. Principal component
analysis grouped the widths into contiguous anatomical regions.
We conducted analysis of variance of corpus callosum widths as
well as support vector machine stratification into patient groups.
Results There was statistically significant narrowing of the
mid–posterior body and genu of the corpus callosum in children
with hypoxic–ischaemic brain injury. Support vector machine
analysis yielded over 95% accuracy in patient group stratification
using the corpus callosum centile widths.
Conclusion Focal volume loss is seen in the corpus callosum
of children with hypoxic–ischaemic brain injury secondary to
loss of commissural fibres arising in the paracentral lobules.
Support vector machine stratification into the hypoxic–ischaemic
brain injury group or the control group on the basis of
corpus callosum width is highly accurate and points towards
rapid clinical translation of this technique as a potential biomarker
of hypoxic–ischaemic brain injur